(34n+1+24n+1)chia het cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
viết lại đề cho chuẩn
nhìn mình chẳng hiểu n là số mũ hay là nhân, hay có gạch trên đầu...
b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5
c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
d) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
e) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Lời giải:
Ta thấy \(2^{4n+2}-2=2(2^{4n}-1)=2(16^n-1)\)
$16\equiv 1\pmod 5\Rightarrow 16^n\equiv 1\pmod 5$
$\Rightarrow 16^n-1\equiv 0\pmod 5$
$\Rightarrow 16^n-1\vdots 5$
$\Rightarrow 2(16^n-1)\vdots 10$
Vậy đáp án b.
Lời giải:
Bổ sung điều kiện $n$ là số tự nhiên.
Đặt $3^{2n}=a$. Có: $a=3^{2n}=9^n\equiv 1^n\equiv 1\pmod 8$
$\Rightarrow a=8k+1$ với $k$ là số tự nhiên.
Có:
$3^{4n+1}+10.3^{2n}-13=3.3^{4n}+10.3^{2n}-13$
$=3a^2+10a-13=(a-1)(3a+13)$
$=(8k+1-1)[3(8k+1)+13]=8k(24k+16)=64k(3k+2)\vdots 64$
Ta có đpcm.
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Ta có 24n + 1 + 3 = 24n . 2 + 3 = 16n . 2 + 3 = ( ...6 ) . 2 + 3 = ( ...2 ) + 3 = ( ...5 )
Vì số có chữ số tận cùng là 5 thì chia hết cho 5 nên ( 24n + 1 + 3 ) ⋮ 5