chung to rang 30+31+32+33+......+311 chia het cho 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰
= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)
= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)
= 3.4 + 3³.4 + ... + 3⁹⁹.4
= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4
Vậy A ⋮ 4
\(B=3^0+3^1+3^2...+3^{100}\)
\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)
\(=3^0\times13+3^3\times13+...+3^{98}\times13\)
\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)
B=30+31+32...+3100B=30+31+32...+3100
=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)
=30×13+33×13+...+398×13=30×13+33×13+...+398×13
=13×(30+33+...+3
a, C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 + 3 5 +...+ 3 9 + 3 10 + 3 11
= 1 + 3 1 + 3 2 + 3 3 . 1 + 3 1 + 3 2 + ... + 3 9 1 + 3 1 + 3 2
= 1 + 3 1 + 3 2 . 1 + 3 3 + . . . + 3 9
= 13. 1 + 3 3 + . . . + 3 9 ⋮ 13
b, C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 + 3 10 + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 1 + 3 1 + 3 2 + 3 3 + 3 8 1 + 3 1 + 3 2 + 3 3
= 1 + 3 1 + 3 2 + 3 3 . 1 + 3 4 + 3 8
= 40. 1 + 3 4 + 3 8 ⋮ 40
cho A = 1 + 3 + 32 + 33 + ... + 311
a ) chứng minh A chia hết cho 13
b) chứng minh A chia hết cho 40
A=1+3+3^2+3^3+...+3^98+3^99+3^100
A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
A=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy A chia hết cho 13
\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)
Ý a phải chia hết cho 13 chứ em?
b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)
=40(1+...+3^8) chia hết cho 40
a: C ko chia hết cho 15 nha bạn
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
=1+3+3^2+3^3+........+3^11
=(1+3+3^2+3^3)+ ..........+ (3^8+3^9+3^10+3^11)
=40+......+3^8(1+3+3^2+3^3)
=40+......+3^8.40
=40(1+.....+3^8)
Mà 40 chia hết cho 40
Nên (1+.......+3^8) chia hết cho 40
--> 3^0+3^1+3^2+3^3+.....+3^8 chia hết cho 40
Ta có: 30+31+32+33+......+311
=1+31+32+33+......+311
=(1+31+32+33)+......+(38+39+310+311)
=(1+31+32+33)+..+38.(1+31+32+33)
=40+..+38.40
=40.(1+..+38) (chia hết cho 40)