Thực hiện phép tính:
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; (\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\)) x \(\dfrac{3}{4}\) = \(\dfrac{1}{4}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) : \(\dfrac{3}{4}\)
\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) x \(\dfrac{4}{3}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{3}\)
\(\dfrac{1}{4}x\) = \(\dfrac{1}{3}\) + \(\dfrac{1}{8}\)
\(\dfrac{1}{4}\) \(x\)= \(\dfrac{8}{24}\) + \(\dfrac{11}{24}\)
\(\dfrac{1}{4}x=\dfrac{11}{24}\)
\(x=\dfrac{11}{24}:\dfrac{1}{4}\)
\(x=\dfrac{11}{24}\times4\)
\(x=\dfrac{11}{6}\)
b; \(\dfrac{12}{5}:x\) = \(\dfrac{14}{3}\) x \(\dfrac{4}{7}\)
\(\dfrac{12}{5}\) : \(x\) = \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) : \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) x \(\dfrac{3}{8}\)
\(x\) = \(\dfrac{9}{10}\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(M=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(M=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(M=2^{10}\)
\(M=1024\)
a ) 5 ^30 : ( 5^25 . 6 + 5^25 . 9 )
= 5^30 : [ 5^25 ( 6 + 9 ) ]
= 5^30 : [ 5^25 . 15 ]
= 5^30 : [ 5^25 . 5 . 3 ]
= 5^30 : [ 5^26 . 3 ]
= 5^30 : 5^26 : 3
= 5^4 : 3
b ) ( 20 . 2^4 + 12 . 2^4 - 48 . 2^2 ) : 8^2
= ( 20 . 2^4 + 12.2^4 - 12 . 2^2 . 2^2 ) : 8^2
= ( 20 . 2^4 + 12.2^4 - 12.2^4 ) : 8^2
= 20 . 2^4 : 8^2
= 5 . 2^2 . 2^4 : ( 2^3 )^2
= 5 . 2^6 : 2^6
= 5
= 625 : 3
= 625/3
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\times\left(2^{20}+1\right)}{2^{30}\times\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt ^^
Câu 1:
\(\frac{5^4.18^4}{125.9^5.16}\) = \(\frac{5^4.\left(2.9\right)^4}{5^3.9^5.2^4}\) = \(\frac{5^4.2^4.9^4}{5^3.9^5.2^4}\) = \(\frac{5}{9}\)
Câu 2:
\(\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\) = \(\frac{5^{32}.\left(4.5\right)^{43}}{\left(-2.4\right)^{29}.\left(5^3\right)^{25}}\) = \(\frac{5^{32}.4^{43}.5^{43}}{\left(-2\right)^{29}.4^{29}.5^{75}}\) = \(\frac{4^{14}.5^{43}}{\left(-2\right)^{29}.5^{43}}\)
=\(\frac{4^{14}}{\left(-2\right)^{29}}\) = = \(\frac{\left[-2.\left(-2\right)\right]^{14}}{\left(-2\right)^{29}}\) = \(\frac{\left(-2\right)^{14}.\left(-2\right)^{14}}{\left(-2\right)^{29}}\) = \(\frac{\left(-2\right)^{14}}{\left(-2\right)^{15}}\) = \(\frac{-1}{2}\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}:\sqrt{\dfrac{25}{9}}=\dfrac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}:\dfrac{5}{3}\)
\(=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}.\dfrac{5}{3}=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1-5\right)}.\dfrac{5}{3}=\dfrac{1-3}{1-5}.\dfrac{5}{3}=\dfrac{1}{2}.\dfrac{5}{3}=\dfrac{5}{6}\)
\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\div\sqrt{\dfrac{25}{9}}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\div\dfrac{5}{4}\)
=\(\dfrac{2^{10}\cdot3^8\left(1-2\cdot3\right)}{2^{10}\cdot3^8\left(1+5\right)}\div\dfrac{5}{4}\)
=\(\dfrac{1-6}{1+5}\cdot\dfrac{4}{5}\)
=\(-\dfrac{5}{6}\cdot\dfrac{4}{5}\)
=\(-\dfrac{2}{3}\)
\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
= \(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)=\(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)=\(\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)=\(\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)=\(\frac{2^{40}}{2^{30}}\)= 210