K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BAC=góc BCA

=>sđ cung BC=sđ cung BA

b: xy//DE
=>góc AED=góc yAE=góc ABC

c: góc AED=góc ABC

=>góc ABC+góc DEC=180 độ

=>BCDE nội tiếp

 

a: Xét (O) có

MB,MC là tiếp tuyến

=>MB=MC

mà OB=OC

nên OM là trung trực của BC

Xét ΔMEB và ΔMBF có

góc MBE=góc MFB

góc EMB chung

=>ΔMEB đồng dạng với ΔMBF

=>MB^2=ME*MF=MH*MO

15 tháng 3 2020

ID cắt EF tại G. cần chứng minh A,G,M thẳng hàng

A B C I D E F M M' G S T

Ta có : AG cắt BC tại M'. đường thẳng qua G song song với BC cắt AB,AC tại S,T

Dễ thấy \(ID\perp BC\)\(\Rightarrow IG\perp ST\)

Tứ giác FSGI nội tiếp, tứ giác IGET nội tiếp \(\Rightarrow\hept{\begin{cases}\widehat{IFG}=\widehat{ISG}\\\widehat{ITG}=\widehat{IEG}\end{cases}\Rightarrow\widehat{ISG}=\widehat{ITG}}\)( Vì \(\widehat{IFG}=\widehat{IEG}\))

\(\Rightarrow\Delta IST\)cân tại I có \(IG\perp ST\)nên GS = GT

Xét hình thang STCB có BS,M'G,CT cắt nhau tại A và G là trung điểm của ST nên M' là trung điểm của BC

\(\Rightarrow M'\equiv M\)hay A,G,M thẳng hàng

15 tháng 3 2020

A B C F E K D I M G H N

AM cắt KI tại H 

Dễ thấy  \(AI\perp EF\)nên \(KG\perp AI\)

\(\Delta AIK\)có \(IG\perp AK;KG\perp AI\)nên G là trực tâm \(\Rightarrow AG\perp KI\)tại H

AI cắt EF tại N 

Tứ giác ANHK nội tiếp \(\Rightarrow IH.IK=IN.IA=IF^2=ID^2\Rightarrow\frac{IH}{ID}=\frac{ID}{IK}\)

\(\Rightarrow\Delta IDH\approx\Delta IKD\left(c.g.c\right)\)\(\Rightarrow\widehat{IDH}=\widehat{IKD}\)( 1 )

Tứ giác IHMD nội tiếp \(\Rightarrow\widehat{IDH}=\widehat{IMH}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{IKD}=\widehat{IMH}\)

Mà \(\widehat{IMH}+\widehat{MIH}=90^o\)suy ra \(\widehat{IKD}+\widehat{MIH}=90^o\)

\(\Rightarrow MI\perp DK\)

26 tháng 12 2019

A B C E F D O I