K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

b)\(S=A\cdot B\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)

\(=1+\frac{1}{\sqrt{x}+2}\)

Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\)  đạt GTLN 

\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN 

GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)

Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)

20 tháng 7 2016

ĐKXĐ \(\Leftrightarrow\)\(\sqrt{x}\ge0\) và \(\sqrt{x}-1\ne0\)

\(\Leftrightarrow x\ge0\) và \(x\ne1\)

20 tháng 7 2016

a/ \(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)   \(\left(ĐK:x\ge0;x\ne1\right)\)

   \(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

      \(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

     \(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

Y
19 tháng 6 2019

a) ĐKXĐ : \(x\ne4\)

\(A=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-5-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)\(=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)

b) Biểu thức B xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne16\end{matrix}\right.\)

+ \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

+ Với x = 3 ta có :

\(B=\frac{2\sqrt{3}+5}{\sqrt{3}-4}\)\(=\frac{-\left(\sqrt{3}-4\right)\left(\sqrt{3}+2\right)}{\sqrt{3}-4}=-2-\sqrt{3}\)

c) \(A\cdot B=\frac{\sqrt{x}-4}{\sqrt{x}-2}\cdot\frac{2\sqrt{x}+5}{\sqrt{x}-4}=\frac{2\sqrt{x}+5}{\sqrt{x}-2}=2+\frac{9}{\sqrt{x}-2}\)

\(\Rightarrow A\cdot B\) là số tự nhiên \(\Rightarrow\left\{{}\begin{matrix}9⋮\sqrt{x}-2\\\frac{9}{\sqrt{x}-2}\ge-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-2\in\left\{9;3;1;-1\right\}\\\frac{9}{\sqrt{x}-2}\ge-2\end{matrix}\right.\)

\(\Rightarrow x\in\left\{121;25;9;\right\}\)

bài 1: rút gọn biểu thức a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\) b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\) c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\) d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\) bài 2: giải phương trình c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\) bài 3 a)tìm điều kiện để căn thức bậc 2 có...
Đọc tiếp

bài 1: rút gọn biểu thức

a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)

b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\)

c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\)

bài 2: giải phương trình

c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)

bài 3 a)tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\frac{-5}{2x+1}}\)

b) \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)

bài 4 cho biểu thức Q= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\) với x>0 và x khác 1

a) rút gọn Q b) tính giá trị của Q khi x= 9

bài 5 :cho biểu thức P= \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

a) tìm điều kiện của x để biểu thức P xác định

b) rút gọn P

c) tìm giá trị của x để P< 0

1
10 tháng 10 2020

các bạn ơi giúp mình với khocroi

5 tháng 4 2020

a) Đkxđ : \(\left\{{}\begin{matrix}a\ge0\\a\ne9\end{matrix}\right.\)

A = \(\left(\frac{\sqrt{a}+3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\frac{\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)

= \(\frac{2\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}.\frac{\sqrt{a}-3}{\sqrt{a}}\)

= \(\frac{2}{\sqrt{a}+3}\)

b) Để A > \(\frac{1}{2}\)

<=> \(\frac{2}{\sqrt{a}+3}>\frac{1}{2}\Leftrightarrow\frac{2}{\sqrt{a}+3}-\frac{1}{2}>0\)

<=> \(4-\sqrt{a}-3>0\Leftrightarrow1-\sqrt{a}>0\Leftrightarrow a< 1\)

Vậy để A >1/2 thì a <1

9 tháng 7 2019

Bài 1

a > 0

\(a^2=3+\sqrt{5+2\sqrt{3}}+3-\sqrt{5+2\sqrt{3}}\) \(+2\sqrt{3^2-\left(5+2\sqrt{3}\right)}\)

= \(6+2\sqrt{4-2\sqrt{3}}=6+2\left(\sqrt{3}-1\right)=4+2\sqrt{3}\) = \(\left(\sqrt{3}+1\right)^2\)

=> a = \(\sqrt{3}+1\)

Thay vào : a2 -2a - 2 = \(4+2\sqrt{3}-2\left(\sqrt{3}+1\right)-2=0\) (đpcm)

1) Thay x=16 vào A ta có:

A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)

A=\(\frac{16+4+1}{4+2}\)

A=\(\frac{21}{6}=\frac{7}{2}\)

11 tháng 3 2020

\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)

\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)

\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)

\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)