K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2022

a/

\(a^2+b^2=ab+ba=2ab\)

\(\Rightarrow\left(a-b\right)^2=0\Rightarrow a-b=0\Rightarrow a=b\)

b/ Ta có

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Mà \(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Theo AM-GM có

\(\dfrac{a^3+b^3+c^3}{3}\ge\sqrt[3]{a^3b^3c^3}=abc\)

\(\Rightarrow a^3+b^3+c^3\ge3abc\) Dấu = xảy ra khi

\(a^3=b^3=c^3\Rightarrow a=b=c\)

 

 

16 tháng 9 2016

b) Ta có : a\(^2\)+ b\(^2\)+ c\(^2\) =ab+bc+ca

=> 2(a\(^2\)+b\(^2\)+c\(^2\))= 2(ab+bc+ca)

<=>2a\(^2\)+2b\(^2\)+2c\(^2\)=2ab+2bc+2ca

<=> 2a\(^2\)+2b\(^2\)+2c\(^2\)-2ab-2bc-2ca=0

<=> a\(^2\)+a\(^2\)+b\(^2\)+b\(^2\)+c\(^2\)+c\(^2\)-2ab-2bc=2ca=0

<=> (a\(^2\)-2ab+b\(^2\))+(b\(^2\)-2bc+b\(^2\))+(a\(^2\)-2ca+c\(^2\))

<=> (a-b)\(^2\)+(b-c)\(^2\)+(a-c)\(^2\) =a

<=> hoặc a-b=0 hoặc b-c=o hoặc a-c=o <=>a=b hoặc b=c hoặc a=c

=>a=b=c (đpcm)

16 tháng 9 2016

a) Theo đề bài: \(a^2+b^2=ab\)

=>\(a^2+b^2-ab=0\)

=>\(a^2-2ab+b^2+ab=0\)

=>\(\left(a-b\right)^2+ab=0\)

Vì \(\left(a-b\right)^2\ge0\)  để \(\left(a-b\right)^2+ab=0\) <=> \(\left(a-b\right)^2=ab=0\)

(a-b)2=0 <=> a-b=0 <=> a=b (đpcm)

b)\(a^2+b^2+c^2=ab+bc+ca\)

=>\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

=>\(2a^2+2b^2+2c^2=2ab+2bc+2ac\)

=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Vì \(\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\) để \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

<=>\(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)

<=>a-b=b-c=a-c=0

<=>a=b=c (đpcm)

1 tháng 8 2015

a) => 2a^2 + 2b^2 = 2ab + 2ba

=>  2a^2 + 2b^2 - 2ab - 2ba = 0

=> (a-b)^2 + (a-b)^2 = 0

=> 2(a-b)^2 = 0

=> a-b = 0

=> a = b

b) Nhân hai vế với 2 và làm tương tự câu a)

=> (a-b)^2 + (b-c)^2 + (a-c)^2 = 0

=> a = b = c

16 tháng 7 2019

\(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\) 

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

16 tháng 7 2019

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(=\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(a-c\right)^2\ge0\\\left(b-c\right)^2\ge0\end{cases}}\Rightarrow\)\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

Vậy a = b = c (đpcm)

15 tháng 6 2016

1) a) a^2+b^2=ab+ba

<=> a^2+b^2-2ab=0

<=> (a-b)^2=0

<=> a-b=0 <=> a=b (đpcm)

b) a^2+b^2+c^2=ab+bc+ca

<=> 2a^2+2b^2+2c^2=2ab+2bc+2ca

<=> (a^2-2ab+b^2)+(a^2-2ca+c^2)+(b^2-2bc+c^2)=0

<=> (a-b)^2+(a-c)^2+(b-c)^2=0

<=> a-b=0 và a-c=0 và b-c=0

<=> a=b và a=c và b=c

<=> a=b=c (đpcm)

26 tháng 4 2018

ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4 

=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3

=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab

=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5

=> 2ac/3=2ab=2bc/5

Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5    (1)

          2ac/3 = 2bc/5 => a/3 = b/5                         (2)

từ (1) và(2) => a/3 = b/5 = c/15

23 tháng 12 2018

bạn 2-3-4=5 ??

2 tháng 12 2016

Ta có: a2 + b2 + c2 - ab - bc - ca = 0

=> aa + bb + cc - ab - bc - ca = 0

=> aa + ab - bb + bc - cc -+ca = 0

=> a - b - c      = 0

=> a = b = c (đpcm)

2 tháng 12 2016

a2+b2+c2-ab-bc-ca=2a2+2b2+2c2-2ab-2bc-2ca=a2-2ab+b2+b2-2bc+c2+c2-2cb+b2=(a-b)2+(b-c)2+(c-a)2=0

=>\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}=>a=b=c\)

6 tháng 1 2019

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-\left(2ab+2bc+2ca\right)=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)    (1)

Vì \(\left(a-b\right)^2\ge0;\left(b-a\right)^2\ge0;\left(c-a\right)^2\ge0\)

Nên (1) \(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)     \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

Bình phương 2 vế ta được

2a2+2b2+2c2=2ab+2bc+2ac

Lấy VT trừ VP ta được

(a-b)2+(b-c)2+(c-a)2=0

=>a=b=c=0