\(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
\(a,\left(x+2\right)^2-9=0\\ \Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{1;-5\right\}\)
\(b,x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{6;-4\right\}\)
\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\\ \Leftrightarrow25x^2+10x+1-25x^2+9=30\\ \Leftrightarrow25x^2+10x-25x^2=30-1-9\\ \Leftrightarrow10x=20\\ \Leftrightarrow x=2\\ Vậy\dfrac{ }{ }S=\left\{2\right\}\)
\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\\ \Leftrightarrow x^3-1-x\left(x^2-4\right)=5\\ \Leftrightarrow x^3-1-x^3+4x=5\\ \Leftrightarrow x^3-x^3+4x=5+1\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\dfrac{ }{ }S=\left\{\dfrac{3}{2}\right\}\)
a: =>(x+2-3)(x+2+3)=0
=>(x-1)(x+5)=0
=>x=1 hoặc x=-5
b: =>(x-1)^2=25
=>x-1=5 hoặc x-1=-5
=>x=-4 hoặc x=6
c: =>25x^2+10x+1-25x^2+9=30
=>10x+10=30
=>x+1=3
=>x=2
d: =>x^3-1-x(x^2-4)=5
=>x^3-1-x^3+4x=5
=>4x=6
=>x=3/2
a) ta có : \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x=30\Leftrightarrow15x=30\Leftrightarrow x=2\)
b) điều kiện : \(x\ne\dfrac{1}{5};x\ne1;x\ne\dfrac{3}{5}\)
ta có : \(\dfrac{3}{5x-1}+\dfrac{2}{3-3x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\Leftrightarrow\dfrac{3\left(3-3x\right)+2\left(5x-1\right)}{\left(5x-1\right)\left(3-3x\right)}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\Leftrightarrow\dfrac{x+7}{3-3x}=\dfrac{4}{3-5x}\Leftrightarrow\left(x+7\right)\left(3-5x\right)=4\left(3-3x\right)\)
\(\Leftrightarrow-5x^2-20+9=0\)
ta có : \(\Delta'=\left(10\right)^2+5\left(9\right)=145>0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x=\dfrac{10+\sqrt{145}}{-5};x=\dfrac{10-\sqrt{145}}{-5}\)
Đề bài này chắc có vấn đề, pt nghiệm rất xấu
Rút gọn được về dạng: \(10x^3-26x^2-3=0\)
Nhưng đây là pt bậc 3 ko có nghiệm đẹp
a, \(P=\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
\(=5x-1+2\left(4+5x-20x-25x^2\right)+\left(25x^2+40x+16\right)\)
\(=5x-1+8-30x-50x^2+25x^2+40x+16\)
\(=\left(-50x^2+25x^2\right)+\left(5x-30x+40x\right)+\left(-1+8+16\right)\)
\(=-25x^2+15x+23\)
b, \(Q=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(=x^3-3x^2y+3xy^2-y^3+y^3+3y^2x+3yx^2+x^3+y^3-3y^2x+3yx^2-x^3-3x^2y-3xy^2\)
\(=\left(x^3+x^3-x^3\right)+\left(-y^3+y^3+y^3\right)+\left(-3x^2y+3x^2y+3x^2y-3x^2y\right)+\left(3xy^2+3xy^2-3xy^2-3xy^2\right)\)
\(=x^3+y^3\)
Chúc bạn học tốt!!!
\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)
\(25x^2-10x+1-25x^2+16=7\)
\(17-10x=7\)
\(10x=10\)
\(x=1\)
Ta có: (5x+1)^2 - (25x^2 - 9)= 30
(5x+1 - 5x)(5x+1+5x) + 9 = 30
10x +10 = 30
=> x=2