C=1x2+2x3+3x4+......+2021x2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+...+ \(\dfrac{1}{2021\times2022}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\)
A = 1 - \(\dfrac{1}{2022}\)
A = \(\dfrac{2021}{2022}\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
3C = 1x2x3 + 2x3x(4-1) + ... + 11x12x(13-9)
3C = 1x2x3 + 2x3x4 - 1x2x3 + ... + 11x12x13 - 9x11x12
3C = 9x11x12
3C = 1188
C = 396
Ta có: \(C=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}\)
\(\Leftrightarrow C=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}\right)\)
\(\Leftrightarrow C=2\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(\Leftrightarrow C=2\left(1-\dfrac{1}{7}\right)=\dfrac{2.6}{7}=\dfrac{12}{7}\)
=1-2+2-3+......+2021-2022
=1-2022
=-2021
=1-2+2-3+......+2021-2022
=1-2022
=-2021