K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 1

Lời giải:

a.

 

Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$

$\Leftrightarrow x+2m=7$

$\Leftrightarrow x=7-2m$

$y=2-x=2-(7-2m)=2m-5$

Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$

Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$

Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:

$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$

Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$

b.

$xy>0$

$\Leftrightarrow (7-2m)(2m-5)>0$

$\Leftrightarrow 7> 2m> 5$

$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$

Do $m$ nguyên nên $m=3$

Thử lại thấy đúng.

 

22 tháng 10 2021

Ta có: (x-y + (y-z) + (z-x) = 0

Đặt x - y = a, y-z = b, z-x = c thì a+b+c=0

Khi đó \(a^5+b^5+c^5⋮5abc\)

Vậy ta có đpcm

28 tháng 1 2023

19 tháng 4 2019

EM LÀ CON GÁI HAY TRAI VẬY 

19 tháng 4 2019

Có: \(x+y+z⋮6\)

\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)

\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)

\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)

\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)

\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)

\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)

\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)

Ta có:\(x+y+z=6k\left(k\in Z\right)\)

\(\Rightarrow\)x+y+z là số chẵn.

\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn

\(\Rightarrow xyz⋮2\)

\(\Rightarrow3xyz⋮6\)

\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))

đpcm

18 tháng 2 2018

Câu 1 :

Ta có :

\(\Delta=\left(m-1\right)^2-4.\left(2m-7\right)\)

\(=m^2-2m+1-8m+28\)

\(=m^2-10m+27>0\)

Do đó pt luôn có 2 nghiệm phân biệt

NV
29 tháng 12 2021

a. Bạn tự giải

b. Hệ có nghiệm khi \(m\ne2\) , khi đó hệ tương đương:

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=-2\\x+2y=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{-2}{m-2}\\x=3-2y\end{matrix}\right.\)

Do \(x=3-2y\Rightarrow\) nếu \(y\in Z\) thì \(x\in Z\)

Mà \(y=\dfrac{-2}{m-2}\Rightarrow y\in Z\) khi \(m-2=Ư\left(2\right)\)

\(\Rightarrow m-2=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow m=\left\{0;1;3;4\right\}\)