K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2022

\(=\dfrac{4+a+4\sqrt{a}-a+6\sqrt{a}-9}{2a-\sqrt{a}}=\)

\(=\dfrac{10\sqrt{a}-5}{2a-\sqrt{a}}=\dfrac{5\left(2\sqrt{a}-1\right)}{\sqrt{a}\left(2\sqrt{a-1}\right)}=\)

\(=\dfrac{5\sqrt{a}}{a}\)

AH
Akai Haruma
Giáo viên
23 tháng 7 2022

Lời giải:

ĐKXĐ: $a>0; a\neq \frac{1}{4}$
\(A=\frac{(2+\sqrt{a}-\sqrt{a}+3)(2+\sqrt{a}+\sqrt{a}-3)}{\sqrt{a}(2\sqrt{a}-1)}=\frac{5(2\sqrt{a}-1)}{\sqrt{a}(2\sqrt{a}-1)}=\frac{5}{\sqrt{a}}\)

P/s: Lần sau bạn lưu ý ghi đầy đủ yêu cầu đề bài

28 tháng 6 2021

`M=sqrt{(3a-1)^2}+2a-3`

`=|3a-1|+2a-3`

`=3a-1+2a-3(do \ a>=1/3)`

`=5a-4`

`N=sqrt{(4-a)^2}-a+5`

`=|4-a|-a+5`

`=a-4-a+5(do \ a>4)`

`=1`

`I=sqrt{(3-2a)^2}+2-7`

`=|3-2a|-5`

`=3-2a-5(do \ a<3/2)`

`=-2-2a`

`K=(a^2-9)/4*sqrt{4/(a-2)^2}`

`=(a^2-9)/4*|2/(a-2)|`

`=(a^2-9)/(2|a-2|)`

Nếu `3>a>2=>|a-2|=a-2`

`=>K=(a^2-9)/(2(a-2))`

Nếu `a<2=>|a-2|=2-a`

`=>K=(a^2-9)/(2(2-a))`

28 tháng 6 2021

\(M=\left|3a-1\right|+2a-3\)

\(a-\dfrac{1}{3}\ge0\)

\(\Rightarrow M=3a-1+2a-3=5a-4\)

\(N=\left|4-a\right|-a+5\)

\(4-a< 0\)

\(\Rightarrow N=a-4-a+5=1\)

\(I=\left|3-2a\right|-5\)

\(a-\dfrac{3}{2}< 0\)

\(\Rightarrow I=3-2a-5=-2a-2\)

K, Ta có : \(a-3< 0\)

\(\Rightarrow K=\dfrac{2\left(a^2-9\right)}{4\left|a-2\right|}=\dfrac{\left(a-3\right)\left(a+3\right)}{\left|2a-4\right|}\)
 

a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)

\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)

=-a-1

b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)

\(=\left|3a-5\right|-2a+4\)

\(=5-3a-2a+4\)

=9-5a

c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)

\(=4a-3-\left|2a-1\right|\)

\(=4a-3-2a+1\)

\(=2a-2\)

d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)

\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)

\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)

\(=-a^2\)

2 tháng 10 2021

\(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+\sqrt{b}}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\left(đk:a\ne b,a\ge0,b\ge0\right)\)

\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+\sqrt{b}\right)}.\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\dfrac{2}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2.2}{\left(\sqrt{a}-\sqrt{b}\right)^2\left(a-1\right)}=\dfrac{2}{a-1}\in Z\)

\(\Rightarrow a-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Do \(a\ge0\)

\(\Rightarrow a\in\left\{0;2;3\right\}\)

 

Ta có: \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)

\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{2}{a-1}\)

\(=\dfrac{2}{a-1}\)

Để P là số nguyên thì \(a-1\in\left\{1;-1;2;-2\right\}\)

hay \(a\in\left\{2;0;3\right\}\)

NV
30 tháng 7 2021

\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)

\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)

\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)

\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)

\(A=\sqrt{\left(a-3\right)^2}-3a\)

=3-a-3a

=3-4a

 

a: \(A=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{a-1}\)

\(=\dfrac{\left(a-1\right)^2}{4a}\cdot\dfrac{-4\sqrt{a}}{a-1}\)

\(=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)

b: \(=1+\left(\dfrac{\left(2\sqrt{a}-1\right)}{1-\sqrt{a}}+\dfrac{2a\sqrt{a}-\sqrt{a}+a}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)

Δ\(=1+\left(\dfrac{\left(-2\sqrt{a}+1\right)}{\sqrt{a}-1}+\dfrac{2a\sqrt{a}-\sqrt{a}+a}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)

\(=1+\left(\dfrac{-2a\sqrt{a}-\sqrt{a}+1+2a\sqrt{a}-\sqrt{a}+a}{a+\sqrt{a}+1}\cdot\dfrac{\sqrt{a}}{2\sqrt{a}-1}\right)\)

\(=1+\dfrac{\left(\sqrt{a}-1\right)^2\cdot\sqrt{a}}{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{2a\sqrt{a}+2a+2\sqrt{a}-a-\sqrt{a}-1+a\sqrt{a}-2a+\sqrt{a}}{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{3a\sqrt{a}-a+2\sqrt{a}-1}{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

a: ĐKXĐ: a>=0; b>=0; ab<>0; a<>1\(M=\dfrac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-1\right)}\)

\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-1\right)}\)

\(=\dfrac{a-2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{1}{a-1}=\dfrac{1}{a-1}\)

b: M nguyên khi a-1 thuộc {1;-1}

=>a thuộc {2;0}