Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\dfrac{a^{\dfrac{4}{3}}\left(a^{-\dfrac{1}{3}}+a^{\dfrac{2}{3}}\right)}{a^{\dfrac{1}{4}}\left(a^{\dfrac{3}{4}}+a^{-\dfrac{1}{4}}\right)}=\dfrac{a^{\left(\dfrac{4}{3}-\dfrac{1}{3}\right)+}a^{\left(\dfrac{4}{3}+\dfrac{2}{3}\right)}}{a^{\left(\dfrac{1}{4}+\dfrac{3}{4}\right)}+a^{\left(\dfrac{1}{4}-\dfrac{1}{4}\right)}}=\dfrac{a+a^2}{a+1}=\dfrac{a\left(a+1\right)}{a+1}\)
\(a>0\Rightarrow a+1\ne0\) \(\Rightarrow A=a\)
\(A=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\) (ĐK: \(x\ge0;x\ne\dfrac{1}{9}\))
\(A=\left[\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}\right)^2-1^2}\right]:\left[\dfrac{\left(3\sqrt{x}+1\right)\cdot1}{3\sqrt{x}+1}-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right]\)
\(A=\left[\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}-1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\dfrac{3}{3\sqrt{x}+1}\)
\(A=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(A=\dfrac{3x+3\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(A=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\)
\(A=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
\(A=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)
\(=\dfrac{3x+3\sqrt{x}}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)
\(=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
Bài này e rằng quá khó để tự luận do vấn đề cơ số
Nhưng tinh ý 1 chút thì giải trắc nghiệm đơn giản:
\(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}=\dfrac{x-1}{2\sqrt{x}}\)
Để ý rằng \(x-1-2\sqrt{x}=x-\left(2\sqrt{x}+1\right)\)
Do đó pt luôn có nghiệm thỏa mãn: \(x-2\sqrt{x}-1=0\Rightarrow x=3+2\sqrt{2}\)
Giống bài trước, \(x=3+2\sqrt{2}\) là nghiệm
\(\Rightarrow y=\dfrac{mx+1}{x-m}\Rightarrow y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\) nghịch biến trên miền xác định
\(\Rightarrow\max\limits_{\left[1;2\right]}y=y\left(1\right)=\dfrac{m+1}{1-m}=-2\Rightarrow m\)
Cách làm đơn giản nhất:
Do \(\int f\left(x\right)dx=F\left(x\right)\Rightarrow F'\left(x\right)=f\left(x\right)\)
Ta có: \(F\left(x\right)=A\sqrt{1-x^3}+\dfrac{B}{1+\sqrt{x}}\)
\(\Rightarrow F'\left(x\right)=\dfrac{A\left(-3x^2\right)}{2\sqrt{1-x^3}}+B.\left(-\dfrac{\dfrac{1}{2\sqrt{x}}}{\left(1+\sqrt{x}\right)^2}\right)\)
\(\Rightarrow F'\left(x\right)=\dfrac{-3A}{2}.\dfrac{x^2}{\sqrt{1-x^3}}-\dfrac{B}{2}.\dfrac{1}{\sqrt{x}\left(1+\sqrt{x}\right)^2}=f\left(x\right)\)
Đồng nhất hệ số ta được:
\(\left\{{}\begin{matrix}\dfrac{-3A}{2}=1\\\dfrac{-B}{2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\dfrac{-2}{3}\\B=-2\end{matrix}\right.\) \(\Rightarrow A+B=-\dfrac{8}{3}\)
Cứ áp dụng công thức \(\left(ln\left|u\right|\right)'=\dfrac{u'}{u}\) thôi
Còn câu dưới thì: \(\int\dfrac{axdx}{x^2\sqrt{x^2+a}}\)
Đặt \(u=\sqrt{x^2+a}\Rightarrow x^2=u^2-a\Rightarrow xdx=udu\)
\(\Rightarrow I=\int\dfrac{a.u}{u\left(u^2-a\right)}du\)
Nguyên hàm hữu tỉ khá cơ bản, tách ra bằng hệ số bất định
CMR \(F\left(x\right)=ln\dfrac{x^2-x\sqrt{2} 1}{x^2 x\sqrt{2} 1}\) là 1 nguyên hàm của hàm số \(f\left(x\right)=\dfrac{2... - Hoc24
Hi câu này nữa anh :>