Tìm số a,b,c sao cho \(ax^3+bx^2+c\) chia hết cho x+2 , chia cho \(x^2-1\) thì dư x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
ax^3 + bx^2 + c chia hết cho x + 2 =>x=-2 là nghiệm pt ax^3 + bx^2 + c=0 =>8a-4b-c=0
ax^3 + bx^2 + c chia cho x^2 - 1 thì dư x+5 hay phương trình ax^3 + bx^2 + c -x - 5 =0 co nghiệm x=+/-1 =>a+b+c=6 và -a+b+c=4
ta có hpt
8a-4b-c=0
a+b+c=6
-a+b+c=4
giải hệ dc a=1;b=1;c=4
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
Ta dùng phương pháp xét giá trị riêng.
- Đặt \(ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)
Với \(x=-2\Rightarrow-8a+4b+c=\left(-2+2\right)Q\left(x\right)=0\)\(\left(\cdot\right)\)
- Đặt \(ax^3+bx^2+c=\left(x^2-1\right).Q\left(x\right)+x+5\)
- Với \(x=1\Rightarrow a+b+c=\left(1-1\right)Q\left(x\right)+1+5\)
\(\Rightarrow a+b+c=6\) Với \(x=-1\Rightarrow-a+b+c=\left(1-1\right)Q\left(x\right)+5-1\)
\(\Rightarrow-a+b+c=4\)
Cộng cả hai vế vào có : \(2\left(b+c\right)=10\)
\(\Rightarrow b+c=5\)
\(\Rightarrow a=1\)
Thay \(a=1\)vào \(\left(\cdot\right);\)có :
\(-8+4b+c=0\)
\(\Rightarrow4b+c=8\)
Mà \(b+c=5\)
\(\Rightarrow\left(4b+c\right)-\left(b+c\right)=8-5\)
\(\Rightarrow3b=3\)
\(\Rightarrow b=1\)
\(\Rightarrow c=5-b=5-1=4\)
Vậy \(\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}.\)
Gọi đa thức f(x) = ax3 + bx2 + c
g(x) = ax3 + bx2 - x + c - 5
Ta có f(x) chia hết cho x + 2 nên khi thay x = - 2 thì f(x) = 0
<=> - 8a + 4b + c = 0 (1)
g(x) chia hết cho x2 - 1 hay chia hết cho x + 1 và x - 1
Từ đó ta có
- a + b + c - 4 = 0 và a + b + c - 6 = 0
Từ đây ta có hệ phương trình bật nhất 3 ẩn.
Bạn tự giải phần còn lại nhé