K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2022

\(\left[\left(8x-12\right):4\right].27=729\)

\(\Leftrightarrow\left(8x-12\right):4=27\)

\(\Leftrightarrow8x-12=108\)

\(\Leftrightarrow8x=120\)

\(\Leftrightarrow x=15\)

22 tháng 7 2022

x = 15

11 tháng 8 2018

( 8x - 120 : 4 ) . 27 = 729

8x - 30 = 27

8x = 57

x = 7

Vậy,........

11 tháng 8 2018

(8 × x - 120 ÷ 4) × 27 = 729

=> (8x - 30) = 27

=> 8x = 57

=> x = 57/8

21 tháng 8 2015

=24x31+24x42+24x27

=24x(31+42+27)

=24x100

=2400

21 tháng 8 2015

2x12x31+4x6x42+8x3x27

=24x31+24x42+24x27

=24x(31+42+27)

=24x100

=2400

25 tháng 10 2017

trong đó có  ___  để ghi phân số      ^   là số mũ

\(=\dfrac{3\cdot7\cdot3^4\cdot3^6+3^6\cdot3^4\cdot3^3}{3^2\cdot3^4\cdot2\cdot3^{12}\cdot13+3^2\cdot2\cdot3^3\cdot2\cdot3^4\cdot2\cdot3^2+723\cdot729}\)

\(=\dfrac{3^{11}\cdot7+3^{13}}{3^{18}\cdot26+3^{11}\cdot8+3^7\cdot241}\)

\(=\dfrac{3^{11}\left(7+9\right)}{3^7\left(3^{11}\cdot26+3^4\cdot8+241\right)}=\dfrac{3^7\cdot16}{17\cdot101\cdot2683}\)

 

729 : ( y x 9 ) = 27
           y x 9 = 729 : 27
           y x 9 = 27
           y       = 27 : 9
           y       = 3
Chúc bạn học tốt >w<

17 tháng 12 2022

\(729:\left(y\times9\right)=27\)

\(y\times9=729:27\)

\(y\times9=27\)

\(y=27:9\)

\(y=3\)

Vậy \(y=3\)

5 tháng 5 2023

\(x\) \(\times\) \(\dfrac{1}{4}\) = 6 : 1 : 2

\(x\) \(\times\) \(\dfrac{1}{4}\) = 6:2

\(x\) \(\times\) \(\dfrac{1}{4}\) =  3

\(x\)         = 3 : \(\dfrac{1}{4}\)

\(x\)        = 12

5 tháng 5 2023

Mình nhầm đoạn 6:1/2.nhờ bạn giải lại hộ mình với

1: Ta có: \(x^{10}-4x^8+4x^6\)

\(=x^6\left(x^4-4x^2+4\right)\)

\(=x^6\left(x-2\right)^2\left(x+2\right)^2\)

2: Ta có: \(m^3+27\)

\(=\left(m+3\right)\left(m^2-3m+9\right)\)

3: Ta có: \(x^3+8\)

\(=\left(x+2\right)\left(x^2-2x+4\right)\)

4: Ta có: \(\frac{1}{27}+a^3\)

\(=\left(\frac{1}{3}+a\right)\left(\frac{1}{9}-\frac{a}{3}+a^2\right)\)

5: Ta có: \(8x^3+27y^3\)

\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

6: Ta có: \(\frac{1}{8}x^3+8y^3\)

\(=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)

7: Ta có: \(8x^6-27y^3\)

\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

8: Ta có: \(\frac{1}{8}x^3-8\)

\(=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)

9: Ta có: \(\frac{1}{64}x^6-125y^3\)

\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)

10: Ta có: \(\left(a+b\right)^3-c^3\)

\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)\cdot c+c^2\right]\)

\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)

11: Ta có: \(x^3-\left(y-1\right)^3\)

\(=\left[x-\left(y-1\right)\right]\cdot\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]\)

\(=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)

12: Ta có: \(x^6+1\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

30 tháng 7 2020

1) \(x^{10}-4x^8+4x^6\)

\(=x^6\left(x^4-4x^2+4\right)\)

2) \(m^3+27=m^3+3^3=\left(m+3\right)\left(m^2-3m+3^2\right)\)

3) \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+2^2\right)\)

4) \(\frac{1}{27}+a^3=\left(\frac{1}{3}\right)^3+a^3=\left(\frac{1}{3}+a\right)\left[\left(\frac{1}{3}\right)^2-\frac{1}{3}a+a^2\right]\)

5) \(8x^3+27y^3=\left(2x\right)^3+\left(3y\right)^3=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

6) \(\frac{1}{8}x^3+8y^3=\left(\frac{1}{2}x\right)^3+\left(2y\right)^3=\left(\frac{1}{2}x+2y\right)\left[\left(\frac{1}{2}x\right)^2-\frac{1}{2}x.2y+\left(2y\right)^2\right]=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)

8) \(\frac{1}{8}x^3-8=\left(\frac{1}{2}x\right)^3-2^3=\left(\frac{1}{2}x-2\right)\left[\left(\frac{1}{2}x\right)^2+\frac{1}{2}x.2+2^2\right]=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)

10) \(\left(a+b\right)^3-c^3=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]=\left(a+b-c\right)\left[\left(a^2+2ab+b^2\right)+ac+bc+c^2\right]=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)11) \(x^3-\left(y-1\right)^3=\left(x-y+1\right)\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]=\left(x-y+1\right)\left[x^2+xy-x+\left(y^2-2y+1\right)\right]=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)

P/s: Đăng ít thôi chớ bạn!