K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)

\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)

\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)

\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)

Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

30 tháng 1 2020

Ta có :\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)

\(=\left(\frac{1.3+1}{1.3}\right)\left(\frac{2.4+1}{2.4}\right)\left(\frac{1+3.5}{3.5}\right)...\left(\frac{1+2014.2016}{2014.2016}\right)=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{4060225}{2014.2016}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}=\frac{\left(2.3.4...2015\right).\left(2.3.4...2015\right)}{\left(1.2.3...2016\right).\left(3.4.5...2014\right)}=\frac{2015.2}{2016}=\frac{2015}{1008}\)

6 tháng 7 2016

A=\(\frac{2016\left(2016+1\right)}{2}=2033136\)

Số các số hạng là:

(2016 - 1)/1 +1 = 2016 số hạng

2.S = (2016 + 1) x 2016

2.S = 4066272

S = 4066272 : 2

S = 2033136

11 tháng 7 2017

\(B=\)\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\left(1-\frac{1}{2017}\right)\)

\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}.\frac{2016}{2017}\)

\(\Rightarrow B=\frac{1}{2017}\)

11 tháng 7 2017

Ta có:\(B=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times............\times\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}\times\frac{2}{3}\times............\times\frac{2016}{2017}\)

\(=\frac{1\times2\times..........\times2016}{2\times3\times...........\times2017}=\frac{1}{2017}\)

19 tháng 5 2021

\(\left(\frac{1}{2}:0,5-\frac{1}{4}:0,25+\frac{1}{8}:0,125-\frac{1}{10}:0,1\right):\left(1+2+3+...+2016\right)\\ =\left(1-1+1-1\right):\left(1+2+3+...+2016\right)\\ =0:\left(1+2+3+...+2016\right)=0\)

24 tháng 9 2016

\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)

12 tháng 3 2018

hình như cái này đâu phải toán lớp 5 đâu bạn

12 tháng 3 2018

nhầm toán lớp 6