K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
22 tháng 7 2022

\(\dfrac{2}{5}xA=\dfrac{2}{1x3}+\dfrac{2}{3x5}+\dfrac{2}{5x7}+...+\dfrac{2}{99x101}\\ \dfrac{2}{5}xA=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ \dfrac{2}{5}xA=1-\dfrac{1}{101}=\dfrac{100}{101}\\ A=\dfrac{250}{101}\)

22 tháng 7 2022

\(A=\dfrac{5}{1 \times 3}+\dfrac{5}{3 \times 5}+\dfrac{5}{5 \times 7}+...+\dfrac{5}{99 \times 101}\)

\(A=\dfrac{5}{2} \times(\dfrac{2}{1 \times 3}+\dfrac{2}{3 \times 5}+\dfrac{2}{5 \times 7}+...+\dfrac{2}{99 \times 101})\)

\(A=\dfrac{5}{2} \times (1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{101})\)

\(A=\dfrac{5}{2} \times (1-\dfrac{1}{101})\)

\(A=\dfrac{5}{2} \times (\dfrac{101}{101}-\dfrac{1}{101})\)

\(A=\dfrac{5}{2} \times \dfrac{100}{101}\)

\(A=\dfrac{250}{101}\)

11 tháng 2 2022

917749738461936926399639748776398646491639394748947630373937366

19 tháng 8 2023

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(1-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\) 

 

 

19 tháng 8 2023

\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)

=\(\dfrac{5}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99+101}\right)\)

=\(\dfrac{5}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\) 

=\(\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{5}{2}-\dfrac{100}{101}\)

\(\dfrac{305}{202}\)

13 tháng 3 2022

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{99\times101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)

13 tháng 3 2022

= 100/101

2 tháng 7 2018

a) Số số hạng của dãy A là: (2020-5):2+1 = 404 (số)

    Tổng A là: (2020+5)x404:2=409050

b) \(B=\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{99\times101}\)

        \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)

          \(=1-\frac{1}{101}=\frac{100}{101}\)

c) \(C=\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{98\times100}\)

         \(=\frac{1}{2}\times\left(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+....+\frac{2}{98\times100}\right)\)

           \(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)

             \(=\frac{1}{2}\times\left(1-\frac{1}{100}\right)=\frac{1}{2}\times\frac{99}{100}=\frac{99}{200}\)

Vậy .....

2 tháng 7 2018

A = 5 + 10 + 15 + ... + 2015 + 2020

Số số hạng là : 404

A = 409050

\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(B=1-\frac{1}{101}=\frac{101-1}{101}=\frac{100}{101}\)

\(C=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{98\cdot100}\)

\(C=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}\cdot\left(\frac{1}{4}-\frac{1}{6}\right)+\frac{1}{2}\cdot\left(\frac{1}{6}-\frac{1}{8}\right)+...+\frac{1}{2}\cdot\left(\frac{1}{98}-\frac{1}{100}\right)\)

\(C=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(C=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{2}\cdot\frac{49}{100}=\frac{49}{200}\)

16 tháng 10 2015

A=1x3 +3x5 +5x7 +....+99x101

6A=1x3x(5+1) + 3x5x(7-1) +5x7x(9-3) +...+ 99x101x(103-97)

6A=3+ 1x3x5 +3x5x7-1x3x5 + 5x7x9 -3x5x7 +....+99x101x103 - 97x99x101

6A=3+99x101x103=1019703

21 tháng 8 2015

\(a,\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{43.45}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{43.45}\right)=\frac{5}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{45}\right)=\frac{5}{3}.\frac{44}{45}=\frac{44}{27}\)

21 tháng 5 2022

Theo công thức là ra nhé=))

26 tháng 1 2023

chịu

 

26 tháng 1 2023

 

A=1x3x(5+1) + 3x5x(7-1) +5x7x(9-3) +...+ 99x101x(103-97)

6A=3+ 1x3x5 +3x5x7-1x3x5 + 5x7x9 -3x5x7 +....+99x101x103 - 97x99x101

6A=3+99x101x103=1019703

vậy = 1019703

nếu sai chỗ nào thì sửa hộ mk vs

27 tháng 4 2017

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

b)ĐK: \(n\ne-5\)

\(A=\dfrac{n-2}{n+5}=\dfrac{n+5-7}{n+5}=1-\dfrac{7}{n+5}\)

Để A nguyên thì \(\dfrac{n-2}{n+5}\)phải nguyên <=> \(\dfrac{7}{n+5}\) nguyên mà n là số nguyên <=> 7 chia hết cho n+5 hay n+5 là Ư(7)

Mà Ư(7)={-1;1;-7;7}

Ta có bảng sau:

n+5 -1 1 -7 7
n -6(TM) -4(TM) -12(TM) 2(TM)

Vậy n={-6;-4;-12;2} thì A nguyên

27 tháng 4 2017

a. \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

b, Ta có: \(A=\dfrac{n-2}{n+5}=\dfrac{n+5-7}{n+5}=1-\dfrac{7}{n+5}\)

Để \(A\in Z\) thì \(\dfrac{n-2}{n+5}\in Z\Rightarrow7⋮n+5\Leftrightarrow n+5\in U\left(7\right)=\left\{\pm1;\pm7\right\}\)

Lập bảng giá trị:

\(n+5\) \(1\) \(-1\) \(7\) \(-7\)
\(n\) \(-4\) \(-6\) \(2\) \(-12\)

Vậy, với \(x\in\left\{-12;-6;-4;2\right\}\) thì \(A=\dfrac{n-2}{n+5}\in Z\)