K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

\(=\frac{2.\left(x^2-x+1\right)+1}{\left(x^2-x+1\right)}\)

\(=2+\frac{1}{\left(x^2-x+1\right)}\)

\(\cdot x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra: GTLN của phân thức: \(\frac{1}{\left(x^2-x+1\right)}:\frac{4}{3}\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của Phân thức ban đầu là: \(\frac{10}{3}\)( khi x bằng 1 phần 2 ) ( : nghĩa là là)

25 tháng 1 2017

Gọi pt trên là A.

Ta có A = 2 + \(\frac{1}{x^2-x+1}\)

=> Pt đạt gt lớn nhất <=> \(\frac{1}{x^2-x+1}\)đạt gt lớn nhất <=> \(x^2-x+1\)đạt gt nhỏ nhất <=> x = 1.

6 tháng 9 2016

minh ko biet lam

bai nay dau!

bài nào dễ thì mình mới làm được nha!

mình không giúp được nhưng các bạn bấm vào đây

xem xong ủng hộ nha

chúc bạn học tốt

23 tháng 11 2015

\(Ax^2+4Ax+5A-2x^2+7x-1=0\)

\(\left(A-2\right)x^2+\left(4A+7\right)x+5A-1=0\)

+A=2 => 15x +9 =0 => x =-3/5  (1)

+A khác 2 : PT có nghiệm khi :\(\Delta\ge0\Leftrightarrow\left(4A+7\right)^2+4\left(A-2\right)\left(1-5A\right)\ge0\)

 16A2 +56A+49 -20A2 +44A -8 >/ 0 => 4A2 -100A -41 </ 0  

  =>  \(\frac{25-3\sqrt{74}}{2}\le A\le\frac{25+3\sqrt{74}}{2}\)(2)

(1)(2) => \(\frac{25-3\sqrt{74}}{2}\le A\le\frac{25+3\sqrt{74}}{2}\)

=> A min=\(\frac{25-3\sqrt{74}}{2}\)

A max =\(\frac{25+3\sqrt{74}}{2}\)

 

   

17 tháng 2 2021

\(A=\dfrac{3x+1}{2x^2-x+3}\)

\(\Rightarrow A-1=\dfrac{3x+1}{2x^2-x+3}-1\)

\(A-1=\dfrac{3x+1-2x^2+x-3}{2x^2-x+3}\)

\(A-1=\dfrac{-2x^2+4x-2}{2x^2-x+3}=\dfrac{-2\left(x^2-2x+1\right)}{2x^2-x+3}\)

\(A-1=\dfrac{-2\left(x-1\right)^2}{2x^2-x+3}\le0\)

\(\Rightarrow A\le1\)

Dấu bằng xảy ra khi x=1

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2

27 tháng 11 2017

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

25 tháng 2 2020

1

A ,x2-6x+10=(x-3)2+1>1=>A<5

dấu = xảy ra khi x=3

B x2-2x+5=(x-1)2+4>4=>A>-2

dâu = xay ra khi x=1

25 tháng 2 2020

a, Ta có : \(A=\frac{5}{x^2-6x+10}=\frac{5}{\left(x-3\right)^2+1}\)
Để A lớn nhất <=> \(\left(x-3\right)^2+1\)nhỏ nhất
Ta lại có:
\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+1\ge1\forall x\)
Vậy MaxA= 5/1=5