tìm x
a.[ x-7]:5 = 0
b.x:3-13=47
c.140 - 100 : x = 120
d.x : 6- 6 = 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x - 7 = 5. 0 => x - 7 = 0 =>x = 7.
b) x: 3 = 47 +13 => x: 3 = 60 => x = 60.3 => x = 180.
c) x : 7 - 7 = 0 hoặc x : 12 - 12 = 0. Do đó x = 49 hoặc x = 144.
d) x : 2 = 150 - 135 => x: 2 = 15 => x = 15.2 => x = 30.
e) 100: x = 140 -120 => 100: x = 20 => x = 100:20 => x = 5.
g) x : 5 = 300 - 273 => x : 5 = 27 =>x = 27.5 => x = 135
a) x - 7 = 5. 0 => x - 7 = 0 =>x = 7.
b) x: 3 = 47 +13 => x: 3 = 60 => x = 60.3 => x = 180.
c) x : 7 - 7 = 0 hoặc x : 12 - 12 = 0. Do đó x = 49 hoặc x = 144.
d) x : 2 = 150 - 135 => x: 2 = 15 => x = 15.2 => x = 30.
e) 100: x = 140 -120 => 100: x = 20 => x = 100:20 => x = 5.
g) x : 5 = 300 - 273 => x : 5 = 27 =>x = 27.5 => x = 135
\(a)\left(x-5\right).2=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
\(b)x.3-13=47\)
\(\Rightarrow x.3=47+13\)
\(\Rightarrow x.3=60\)
\(\Rightarrow x=60:3\)
\(\Rightarrow x=20\)
Vậy \(x=20\)
\(c)\left(x.7-7\right)\left(x.12+24\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x.7-7=0\Rightarrow x.7=7\Rightarrow x=1\\x.12+24=0\Rightarrow x.12=-24\Rightarrow x=-2\end{cases}}\)
Vậy\(x\in\left\{1;-2\right\}\)
\(e)140-10.x=120\)
\(\Rightarrow10.x=140-120\)
\(\Rightarrow10.x=20\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
\(g)x.5-127=273\)
\(\Rightarrow x.5=273+127\)
\(\Rightarrow x.5=400\)
\(\Rightarrow x=400:5\)
\(\Rightarrow x=80\)
Vậy \(x=80\)
Tìm x εIN biết
a) 390 - (x-8) = 168:13
b) (x-140) : 7 = 27 - 24
c) x- 6 :2 - ( 48 - 24 ) :2 :6 - 3 = 0
d) x+5.2-(32+16.3:6-15)=0
b) \(\left(x-140\right):7=27-24\)
\(\left(x-140\right):7=3\)
\(x-140=21\)
\(x=161\)
vay \(x=161\)
c) \(x-6:2-\left(48-24\right):2:6-3=0\)
\(x-3-24:2:6-3=0\)
\(x-3-2-3=0\)
\(x-8=0\)
\(x=8\)
vay \(x=8\)
d) \(x+5.2-\left(32+16.3:6-15\right)=0\)
\(x+10-\left(32+8-15\right)=0\)
\(x+10-25=0\)
\(x-15=0\)
\(x=15\)
vay \(x=15\)
a) \(390-\left(x-8\right)=168:13\)
\(390-x+8=\frac{168}{13}\)
\(x+8=390-\frac{168}{13}\)
\(x+8=\frac{5070}{13}-\frac{168}{13}\)
\(x+8=\frac{4902}{13}\)
\(x=\frac{4902}{13}-8\)
\(x=\frac{4798}{13}\)
vay \(x=\frac{4798}{13}\)
a) \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=\dfrac{1}{4}\left(N\right)\end{matrix}\right.\)
Kl: x=0, x=1/4
b) \(x-3\sqrt{x}+2=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(N\right)\\x=1\left(N\right)\end{matrix}\right.\)
Kl: x=4, x=1
c) \(x+5\sqrt{x}-6< 0\) (*)
Đặt \(t=\sqrt{x}\) \(\left(t\ge0\right)\)
bpt (*) trở thành: \(t^2+5t-6< 0\) (**)
Xét pt bậc 2: \(t^2+5t-6=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-6\end{matrix}\right.\)
Bpt (**) có nghiệm là \(-6< t< 1\)
Đối chiếu với đk, ta được: \(0\le t< 1\)
Vậy bpt (*) có nghiệm là \(0\le x< 1\)
Kl: 0 \< x <1
d) \(x-6\sqrt{x}+9\le0\Leftrightarrow\left(\sqrt{x}-3\right)^2\le0\) (*)
mà \(\left(\sqrt{x}-3\right)^2\ge0\)
nên bpt (*) chỉ xảy ra khi \(\left(\sqrt{x}-3\right)^2=0\Leftrightarrow x=9\left(N\right)\)
Kl: x=9
a) \(2x-\sqrt{x}=0\Leftrightarrow2\sqrt{x}\cdot\sqrt{x}-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\2\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=\dfrac{1}{4}\left(N\right)\end{matrix}\right.\)
KL:....
b) \(x-3\sqrt{x}+2=0\) (*)
Đặt \(t=\sqrt{x}\left(t\ge0\right)\)
phương trình (*) trở thành: \(t^2-3t+2=0\)
\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)
phương trình có 2 nghiệm phân biệt:
\(\left[{}\begin{matrix}t=\dfrac{-\left(-3\right)+\sqrt{1}}{2\cdot1}\\t=\dfrac{-\left(-3\right)-\sqrt{1}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=2\left(N\right)\\t=1\left(N\right)\end{matrix}\right.\)
\(t=2\Rightarrow\sqrt{x}=2\Rightarrow x=4\left(N\right)\)
\(t=1\Rightarrow\sqrt{x}=1\Rightarrow x=1\left(N\right)\)
Kl:.....
(x-7): 5 = 0
x - 7 = 0
x = 7
x : 3 - 13 = 47
x: 3 = 47 + 13
x : 3 = 60
x = 60 x 3
x = 180
140 - 100 : x = 120
100 : x = 140 - 120
100 : x = 20
x = 100 : 20
x = 5
x : 6 - 6 = 24
x : 6 = 24 + 6
x : 6 = 30
x = 30 x 6
x = 180
a)
=> x-7=0
x=0+7
x=7
b)
x:3-13=47
x:3=47+13
x:3=60
x=60x3
x=180
c)
140 - 100 : x = 120
100:x=140-120
100:x=20
x=100:20
x=5