Nghiệm của x^4+x^2+1=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x = 2\) vào đa thức \(P(x) = 3x - 4\) ta được: \(P(2) = 3.2 - 4 = 6 - 4 = 2\).
Thay \(x = \dfrac{4}{3}\) vào đa thức \(P(x) = 3x - 4\) ta được: \(P(\dfrac{4}{3}) = 3.\dfrac{4}{3} - 4 = 4 - 4 = 0\).
Vậy x = 2 không là nghiệm của đa thức \(P(x) = 3x - 4\); \(x = \dfrac{4}{3}\)là nghiệm của đa thức \(P(x) = 3x - 4\).
b)Thay \(y = 1\) vào đa thức \(Q(y) = {y^2} - 5y + 4\) ta được: \(Q(1) = {1^2} - 5.1 + 4 = 1 - 5 + 4 = 0\).
Thay \(y = 4\) vào đa thức \(Q(y) = {y^2} - 5y + 4\) ta được: \(Q(4) = {4^2} - 5.4 + 4 = 16 - 20 + 4 = 0\).
Vậy \(y = 1,y = 4\)là nghiệm của đa thức \(Q(y) = {y^2} - 5y + 4\).
Ta có: x^2+(x+1)^2=y^4+(y+1)^4
<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1)
<=> x^2 +x + 1 = {y(y+1) +1}^2
Do VP là SCP, ta có:
* Nếu x >=0
=> x^2 < x^2 +x + 1 <= (x+1)^2
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2
=> x =0 => y=0 hay y=-1
* Nếu x <0 hay x <= -1 (do x nguyên)
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2
=> Để VT là SCP
=> (x+2)^2 = x^2 + x +1
=> x=-1 => y=0 hay y=-1
Ta có: x^2+(x+1)^2=y^4+(y+1)^4
<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1)
<=> x^2 +x + 1 = {y(y+1) +1}^2
Do VP là SCP, ta có:
* Nếu x >=0
=> x^2 < x^2 +x + 1 <= (x+1)^2
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2
=> x =0 => y=0 hay y=-1
* Nếu x <0 hay x <= -1 (do x nguyên)
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2
=> Để VT là SCP
=> (x+2)^2 = x^2 + x +1
=> x=-1 => y=0 hay y=-1
@_@
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
Ta có : 2x2 - 2x + 4
= x2 + (x2 - 2x + 1) + 3
= x2 + (x - 1)2 + 3
Mà \(x^2\ge0;\left(x-1\right)^2\ge0\forall x\in R\)
Nên : x2 + (x - 1)2 + 3 \(\ge3\forall x\in R\)
Do đó : x2 + (x - 1)2 + 3 \(\ne0\)
Vậy đa thức 2x2 - 2x + 4 vô nghiệm