K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(S=1+2+2^2+...+2^{2005}\)

\(2.S=2+2^2+2^3+...+2^{2006}\)

\(2S-S=S=\left(2+2^2+..+2^{2006}\right)-\left(1+2+2^2+..+2^{2005}\right)\)

\(S=2^{2006}-1\)

\(A=5.2^{2004}=\left(4+1\right).2^{2004}=2^2.2^{2004}+2^{2004}=2^{2006}+2^{2004}\)

S<A

14 tháng 10 2023

giúp e với ạ

gấp rút 

ai gửi đầu tiên e tim cho

14 tháng 10 2023

mik bt lm câu 1 thôi nha, bn thông cảm:

a = 2007.2009                              b = 20082

  =(2008 - 1)(2008 + 1)

  = 20082 - 1

Ta có, a = 20082 - 1, b = 20082

mà 20082 - 1 < 20082

=> a < b

14 tháng 7 2023

\(S=1+2+2^2+2^3+...+2^9\) 

Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\) 

\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)

\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\) 

Vậy \(S< 5.2^8\)

\(#Tuyết\)

2S=2+2^2+...+2^10

=>S=2^10-1=1023

5*2^8=256*5=1280

=>S<5*2^8

14 tháng 5 2023

\(S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}\)

\(2.S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(2.S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(S=2-\dfrac{1}{2^{2006}}\)

25 tháng 3 2017

S > 1/3

25 tháng 3 2017

ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)

thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)

vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

29 tháng 6 2021

thank you

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

14 tháng 3 2017

bít kq nhưng ko thích giải

18 tháng 12 2020

cậu ko giúp cậu ấy thì thôi đừng bảo như thế

26 tháng 8 2016

1/21+1/22+....+1/40>1/40.20=1/2=6/12>6/25

=>S>6/25

24 tháng 6 2021

có ai on ko,chat với tui ik

10 tháng 9 2023

S=1+2+22+...+29�=1+2+22+...+29

2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)

2S=2+22+23+...+292�=2+22+23+...+29

2SS=(2+22+23+...+210)(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

 

HT

11 tháng 9 2023

S=1+2+22+...+29�=1+2+22+...+29

2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)

2S=2+22+23+...+292�=2+22+23+...+29

2SS=(2+22+23+...+210)(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

9 tháng 10 2021

\(S=1+2+2^2+...+2^{2005}\\ 2S=2+2^2+...+2^{2006}\\ 2S-S=S=2^{2006}-1< 2^{2006}+2^{2004}=2^2\cdot2^{2004}+2^{2004}=5\cdot2^{2004}\)