K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2022

Xác suất bi vàng là

\(\dfrac{6}{4+6}=60\%\)

19 tháng 7 2022

Xác suất bi vàng là:

    \(\dfrac{6}{4+6}=60\%\)

   

29 tháng 4 2022

Tham khảo

 

a, Xác suất để lấy được 1 viên xanh là

1 over 10=0,1

b, Xác suất để lấy được 1 viên đỏ là

 1 over 6=0,667

c, Xác suất để lấy được 1 viên vàng là

1 fourth=0,25

29 tháng 4 2022

tham khảo

a, Xác suất để lấy được 1 viên xanh là 1:10=0,1

b, Xác suất để lấy được 1 viên đỏ 1:6=0,667

c, Xác suất để lấy được 1 viên vàng 1:4=0,25

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số kết quả của phép thử có thể xảy ra là \(n(\Omega ) = C_{12}^4 = 495\)

a) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 1 bi xanh”, suy ra biến cố đối của biến cố A là \(\overline A \): “Trong 4 viên bi lấy ra không có viên bi xanh nào”

\(\overline A \) xảy ra khi 4 viên bi lấy ra chỉ có màu đỏ hoặc vàng. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_9^4 = 126\)

Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{126}}{{495}} = \frac{{14}}{{55}}\)

Vậy xác suất của biến cố  A là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{{14}}{{55}} = \frac{{41}}{{55}}\)

b) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 2 bi đỏ ”, suy ra biến cố đối của biến cố A là \(\overline A \): “Trong 4 viên bi lấy ra có nhiều hơn 2 bi đỏ”

\(\overline A \) xảy ra khi 4 viên bi lấy ra có 3 hoặc 4 bi đỏ. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_4^3.8 + C_4^4 = 33\)

Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{33}}{{495}} = \frac{1}{{15}}\)

Vậy xác suất của biến cố  A là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{15}} = \frac{{14}}{{15}}\)

Màu xanh 

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Vì 3 viên bi xanh, 4 viên bi đỏ và 5 viên b vàng có kích thước và khối lượng như nhau nên 12 kết quả của phép thử có khả năng xảy ra bằng nhau.

- Biến cố \(A\) xảy ra khi ta lấy được viên bi màu xanh nên có 3 kết quả thuận lợi cho \(A\). Xác suất của biến có \(A\) là:

\(P\left( A \right) = \frac{3}{{12}} = \frac{1}{4}\).

- Biến cố \(B\) xảy ra khi ta lấy được viên bi không có màu vàng nên viên bi lấy được có thể có màu xanh hoặc màu đỏ. Do đó, có 7 kết quả thuận lợi cho \(B\). Xác suất của biến có \(B\) là:

\(P\left( B \right) = \frac{7}{{12}}\).

29 tháng 1 2019

Ta có: số phần tử của không gian mẫu là Ω = C 40 2  

Gọi các biến cố: D: “lấy được 2 bi viên đỏ” ta có: n D = C 20 2 = 190 ;

X: “lấy được 2 bi viên xanh” ta có: n X = C 10 2 = 45 ;

V: “lấy được 2 bi viên vàng” ta có: n V = C 6 2 = 15 ;

T: “ lấy được 2 bi màu trắng” ta có: n T = C 4 2 = 6 .

Ta có D,X,V,T là các biến cố đôi một xung khắc và  A = D ∪ X ∪ V ∪ T

Suy ra xác xuất để lấy được 2 viên bi cùng màu  là:

P A = P D + P X + P V + P T = 256 C 40 2 = 64 195 .

Chọn đáp án D.

11 tháng 5 2017

Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi.

Suy ra số phần tử của không gian mẫu là  

Gọi A là biến cố 6 viên bi được lấy ra có đủ cả ba màu . Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố   tức là 6 viên bi lấy ra không có đủ ba màu như sau:

   Trường hợp 1. Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).

Do đó trường hợp này có  cách.

   Trường hợp 2. Chọn 6 viên bi có đúng hai màu xanh và đỏ, có  cách.

Chọn 6 viên bi có đúng hai màu đỏ và vàng, có    cách.

Chọn 6 viên bi có đúng hai màu xanh và vàng, có   cách.

Do đó trường hợp này có  cách.

Suy ra số phần tử của biến cố   .

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính 

Chọn B.

13 tháng 5 2019

Ta có:  

Gọi các biến cố: D: “lấy được 2 bi viên đỏ” ta có  

       X: “lấy được 2 bi viên xanh” ta có:  

       V: “lấy được 2 bi viên vàng” ta có: 

       T: “ lấy được 2 bi màu trắng” ta có : 

Ta có D; X; V; T  là các biến cố đôi một xung khắc và A= D X ∪ V T

Chọn  B.

19 tháng 12 2020

Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.

\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)

A: "Hai viên bi chọn được cùng màu".

TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)

TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)

\(\Rightarrow n(A)=30+12=42\)

\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).

19 tháng 12 2020

Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.

\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)

A: "Hai viên bi chọn được cùng màu".

TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)

TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)

\(\Rightarrow n(A)=30+12=42\)

\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).

9 tháng 9 2018

Chọn D

Cách 1:

Số phần tử của không gian mẫu: .

Gọi A là biến cố: “lấy ra 4 viên bi có đủ ba màu”

Ta xét các khả năng của biến cố A: 

TH1: Lấy được 1 bi trắng, 1 bi xanh và 2 bi vàng, trường hợp này có  (cách).

TH2: Lấy được 1 bi trắng, 2 bi xanh và 1 bi vàng, trường hợp này có  (cách).

TH3: Lấy được 2 bi trắng, 1 bi xanh và 1 bi vàng, trường hợp này có  (cách).

Số cách lấy 4 viên bi có đủ cả ba màu là: 

Xác suất cần tìm là 

Cách 2:

Số phần tử của không gian mẫu:

Gọi A là biến cố: “lấy ra 4 viên bi không có đủ ba màu” .

Ta có:

 

Xác suất của biến cố A là: 

 

Vậy xác suất cần tìm là: .