Với \(n1\) là số nguyên dương cho trước, xét \(\left(a_1,a_2,...,a_n\right)\) và \(\left(b_1,b_2,...,b_n\right)\) là hai hoán vị khác nhau của các số trong bộ \(\left(\dfrac{1}{1},\dfrac{1}{2},...,\dfrac{1}{n}\right)\), đồng thời thỏa mãn điều kiện \(a_1+b_1\ge a_2+b_2\ge...\ge a_n+b_n\).
a) Với \(n=2022\), hỏi có hay không hai hoán vị mà \(a_i\ne b_i,\forall i=\overline{1,2022}\) và \(\dfrac{a_1+b_1}{a_{2022}+b_{2022}}\inℤ\)?
b) Chứng minh rằng ta...
Đọc tiếp
Với \(n>1\) là số nguyên dương cho trước, xét \(\left(a_1,a_2,...,a_n\right)\) và \(\left(b_1,b_2,...,b_n\right)\) là hai hoán vị khác nhau của các số trong bộ \(\left(\dfrac{1}{1},\dfrac{1}{2},...,\dfrac{1}{n}\right)\), đồng thời thỏa mãn điều kiện \(a_1+b_1\ge a_2+b_2\ge...\ge a_n+b_n\).
a) Với \(n=2022\), hỏi có hay không hai hoán vị mà \(a_i\ne b_i,\forall i=\overline{1,2022}\) và \(\dfrac{a_1+b_1}{a_{2022}+b_{2022}}\inℤ\)?
b) Chứng minh rằng ta luôn có \(a_k+b_k\le\dfrac{4}{k}\) với mọi \(k=1,2,...,n\)
c) Hỏi số 4 trong đánh giá ở b) có thể thay bởi số \(c< 4\) để các điều kiện vẫn được thỏa mãn hay không?
\(n^2+2n-x^2-x=0.\)
\(\Delta'_n=1+x^2+x\ne k^2\left(k\in Z\right)\Rightarrow dpcm\)
Ta có :
\(x\left(x+1\right)=n\left(n+2\right)\)
\(\Leftrightarrow x^2+x=n^2+2n\)
\(\Leftrightarrow x^2+x+1=n^2+2n+1\)
\(\Leftrightarrow x^2+x+1=\left(n+1\right)^2\)
Vì n là số nguyên cho trước thì \(\left(n+1\right)^2\) là một số chính phương
\(x>0\), Ta có : \(x^2+x+1>x^2\)
\(x^2+x+1< x^2+x+1+x=x^2+2x+1\)
\(=\left(x+1\right)^2\)
\(\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)
Hay \(x^2< \left(n+1\right)^2< \left(x+1\right)^2\)
=> Vô lí do không thể có số chính phương nào tồn tại giữa hai số chính phương liên tiếp
Vậy không thể tồn tại số nguyên dương x