Chứng minh rằng 2√2+√3 là số vô tỷ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tương tự ví dụ 11, trang 22, Sách Nâng cao và phát triển Toán 7,
Ta có tính chất :
Nếu a không là số chính phương thì \(\sqrt{a}\)là số vô tỉ
Vì 2,3 không là số chính phương nên \(\sqrt{2};\sqrt{3}\)là số vô tỉ
gia su cbh 2 là số hữu tỉ
=> cbh 2 = a/b (a,b) = 1 (*)
=> a^2/b^2 = 2
=> a^2 = 2b^2 (1)
mà 2b^2 chia het 2 => a^2 chia het 2
=> a chia het 2 ( 2 là số nguyen tố )
=> a = 2m (2)
thay vào (1) => (2m)^2 = 2b^2
=> 4 m^2 = 2b^2
mà 4m^2 chia het 2
=> 2b^2 chia het 2
mà (2,2) = 1
=> b^2 chia het 2
=. b chia het 2 ( 2 là số nguyên tố) (3)
tu (2)(3) => a,b ko nguyên tố cùng nhau
>< (*)
vậy.........................................
Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ
Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
Gỉa sử \(\sqrt{15}\) là số hữu tỉ
=> \(\sqrt{15}=\frac{m}{n}\)( trong đó \(\frac{m}{n}\) là phân số tối giản)=> \(15=\frac{m^2}{n^2}\) hay \(15n^2=m^2\)(1)
Từ (1) => \(m^2\) chia hết cho 15 => m chia hết 15
Đặt m=15k( \(k\in Z\))=> \(m^2=225k^2\)(2)
Tứ (1);(2)=> \(15n^2=225k^2\)=> \(n^2=15k^2\)(3)
Từ (3) => \(n^2\)chia hết cho 15 => n chia hết cho 15
=> \(\frac{m}{n}\)không phải là phân số tối giản trái với giả thiết => \(\sqrt{15}\)không phải là số hửu tỉ
Vậy \(\sqrt{15}\)là số vô tỉ(dpcm)
Giả sử \(\sqrt{7}\) là số hữu tỉ, như vậy có thể viết dưới dạng phân số tối giản \({m\over n}\) tức là \(\sqrt{7} = {m \over n}\) . Suy ra \(7={m^2 \over n^2}\) hay \(7m^2=n^2\) (1)
Đảng thức (1) chứng tỏ \(m^2\vdots7\) mà 7 là số nguyên tố nên \(m\vdots7\) .
Đặt\(m=7k\) (k∈ℤ) ta có \(m^2=49k^2\) (2)
Từ (1) và (2) suy ra \(7n^2=49k^2\) nên \(n^2=7k^2\) (3)
Từ (3) ta lại có \(n^2\vdots7\) và vì 7 là số nguyên tố nên \(n\vdots7\) .
Như vậy m và n cùng chia hết cho 7 nên phân số \({m \over n}\) không tối giản, trái với giả thiết. Vậy \(\sqrt{7}\) không phải là số hữu tỉ, do đó \(\sqrt7\) là số vô tỉ
Đặt \(A=2\sqrt{2}+\sqrt{3}\)
Giả sử A là một số hữu tỉ\(\Rightarrow\)A có dạng \(A=\dfrac{x}{y}\) (tối giản, \(x;y\in N;y\ne0\))
\(\Rightarrow\dfrac{x}{y}=2\sqrt{2}+\sqrt{3}\)
\(\Rightarrow\dfrac{x^2}{y^2}=\left(2\sqrt{2}+\sqrt{3}\right)=11+4\sqrt{6}\)
\(\Leftrightarrow\dfrac{x^2}{y^2}-11=4\sqrt{6}\)
Ta thấy \(\dfrac{x^2}{y^2};11\) là các số hữu tỉ nên \(\dfrac{x^2}{y^2}-11\) là một số hữu tỉ
Mặt khác \(4\sqrt{6}\) là một số vô tỷ
Nên \(\dfrac{x^2}{y^2}-11=4\sqrt{6}\) vô lý
\(\Rightarrow\)Giả thiết bị sai
\(\Rightarrow A\) là một số vô tỉ
\(\Rightarrow2\sqrt{2}+\sqrt{3}\) là một số vô tỉ