K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)

b) Giống câu a ?

c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)

\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)

\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)

\(=\sqrt{ab}\)

12 tháng 5 2019

\(A=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right):\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}=\left[\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}\right].\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\left[\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right].\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\frac{\left(a-b\right)\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{a-b}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}-\sqrt{b}\)

4 tháng 1 2020

\(A=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right):\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}\\ =\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}\right):\frac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\\ =\left(\frac{\sqrt{a^2}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{b^2}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right):\frac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}(\sqrt{a}-\sqrt{b})}\\ =\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}.\frac{\sqrt{ab}(\sqrt{a}-\sqrt{b})}{\sqrt{a}+\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}\)

29 tháng 6 2019

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{\sqrt{a^3}-3a\sqrt{b}+3\sqrt{a}.b-\sqrt{b^3}+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{3\sqrt{a^3}-3a\sqrt{b}+3b\sqrt{a}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)