thực hiện phép tính:
\(\dfrac{13\sqrt{2}-4\sqrt{6}}{24-4\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)
\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)
\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(5-36\right)\)
\(B=-\left(-31\right)\)
\(B=31\)
_____________________________
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=3\sqrt{3}-\sqrt{3}+1\)
\(=2\sqrt{3}+1\)
a, Sửa đề:
\(A=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-2-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}-\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{6-3\sqrt{3}}}{3}\)
1) \(\sqrt{1\dfrac{9}{16}}=\sqrt{\dfrac{25}{16}}=\dfrac{5}{4}\)
2) \(\dfrac{\sqrt{12.5}}{0.5}=\sqrt{\dfrac{12.5}{0.25}}=5\sqrt{2}\)
3) \(\sqrt{\dfrac{25}{64}}=\dfrac{5}{8}\)
4) \(\dfrac{\sqrt{230}}{\sqrt{2.3}}=\sqrt{\dfrac{230}{2.3}}=\sqrt{100}=10\)
5) \(\left(\sqrt{\dfrac{2}{3}}+\sqrt{\dfrac{50}{3}}-\sqrt{24}\right)\cdot\sqrt{6}\)
\(=\left(\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{5\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)
\(=\left(\dfrac{6\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)
\(=0\cdot\sqrt{6}=0\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{\sqrt{2}}{2}\right)\cdot3\sqrt{6}\\ =36-36\sqrt{2}+30\sqrt{3}-3\sqrt{3}\\ =36-36\sqrt{2}+27\sqrt{3}\)
Lời giải:
\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{16}-2}-\frac{12}{3-\sqrt{16}}\right).(\sqrt{6}+11)=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4}{4-2}-\frac{12}{3-4}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{6-1}+2+12\right)(\sqrt{6}+11)=(3\sqrt{6}-3+14)(\sqrt{6}+11)\)
\(=(3\sqrt{6}+11)(\sqrt{6}+11)\)
\(a,\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(1+\sqrt{5}\right)^2}\)
\(=\left|2-\sqrt{5}\right|-\left|1+\sqrt{5}\right|\)
\(=\sqrt{5}-2-\left(1+\sqrt{5}\right)\)
\(=\sqrt{5}-2-1-\sqrt{5}\)
\(=-3\)
\(b,\dfrac{3-5\sqrt{3}}{\sqrt{3}-5}+6\sqrt{\dfrac{4}{3}}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{3}-5\right)}{\sqrt{3}-5}+6\cdot\dfrac{\sqrt{4}}{\sqrt{3}}\)
\(=\sqrt{3}+\dfrac{12}{\sqrt{3}}\)
\(=\sqrt{3}+\dfrac{12\sqrt{3}}{3}\)
\(=\sqrt{3}+4\sqrt{3}\)
\(=5\sqrt{3}\)
#\(Toru\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(1+\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|-\left|1+\sqrt{5}\right|\\ =\sqrt{5}-2-1-\sqrt{5}\\ =-2-1\\ =-3\)
\(\dfrac{3-5\sqrt{3}}{\sqrt{3}-5}+6\sqrt{\dfrac{4}{3}}\\ =\dfrac{\sqrt{3}\left(\sqrt{3}-5\right)}{\sqrt{3}-5}+4\sqrt{3}\\ =\sqrt{3}+4\sqrt{3}\\ =5\sqrt{3}\)
\(a,=\dfrac{\sqrt{7}-5}{2}-\dfrac{3-\sqrt{7}}{2}+\dfrac{6\left(\sqrt{7}+2\right)}{3}-\dfrac{5\left(4-\sqrt{7}\right)}{9}\\ =\dfrac{\sqrt{7}-5-3+\sqrt{7}}{2}+2\sqrt{7}+4-\dfrac{20-5\sqrt{7}}{9}\\ =\dfrac{2\sqrt{7}-8}{2}+2\sqrt{7}+4-\dfrac{20-5\sqrt{7}}{9}\\ =\sqrt{7}-4+2\sqrt{7}+4-\dfrac{20-5\sqrt{7}}{9}\\ =\dfrac{27\sqrt{7}-20+5\sqrt{7}}{9}=\dfrac{32\sqrt{7}-20}{9}\)
\(b,=\dfrac{2\left(\sqrt{6}+2\right)}{2}+\dfrac{2\left(\sqrt{6}-2\right)}{2}+\dfrac{5\sqrt{6}}{6}\\ =\sqrt{6}+2+\sqrt{6}-2+\dfrac{5\sqrt{6}}{6}\\ =\dfrac{12\sqrt{6}+5\sqrt{6}}{6}=\dfrac{17\sqrt{6}}{6}\)
\(c,=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}-\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}\\ =\dfrac{2\sqrt{5}}{5+2\sqrt{6}-5}=\dfrac{2\sqrt{5}}{2\sqrt{6}}=\dfrac{\sqrt{30}}{6}\)