Tìm số x , biết rằng 18 chia hết cho x và x chia hết cho 2 và 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
+) a chia hết cho b => a = k. b ( với k là số tự nhiên ) (1)
+) b chia hết cho a => b = l . a ( với l là số tự nhiên ) (2)
Từ ( 1) , (2) => a = k . b = k . l . a
=> a - k . l . a = 0
=> a ( 1 - k . l ) = 0 Vì a khác 0
=> 1 - k . l = 0
=> k . l = 1 Vì k và l là hai số tự nhiên
=> k = l = 1
Vậy b = a.
Áp dụng:
18 chia hết cho ( x + 2) và ( x+ 2 ) chia hết cho 18
=> 18 = x + 2
=> x = 16
a: \(18=3^2\cdot2;36=3^2\cdot2^2\)
=>\(BCNN\left(18;36\right)=3^2\cdot2^2=36\)
\(x⋮18;x⋮36\)
=>\(x\in BC\left(18;36\right)\)
=>\(x\in B\left(36\right)\)
mà x là số nhỏ nhất khác 0
nên x=36
b: \(25=5^2;45=5\cdot3^2\)
=>\(ƯCLN\left(25;45\right)=5\)
\(25⋮x;45⋮x\)
=>\(x\inƯC\left(25;45\right)\)
mà x là số lớn nhất khác 0
nên x=ƯCLN(25;45)
=>x=5
Bài 1
a) x ⋮ 6 ⇒ x ∈ B(6) = {0; 6; 12; 18; 24; ...}
Mà 10 < x < 18 nên x = 12
b) 24 ⋮ x ⇒ x ∈ Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Mà x > 4
⇒ x ∈ {6; 8; 12; 24}
c) x ⋮ 10 ⇒ x ∈ B(10) = {0; 10; 20; 30; 40;...} (1)
Lại có 45 ⋮ x ⇒ x ∈ Ư(45) = {1; 3; 5; 9; 15; 45} (2)
Từ (1) và (2) ⇒ không tìm được x thỏa mãn đề bài
Bài 2
a) *) (60 + x) ⋮ 5
Mà 60 ⋮ 5
⇒ x ⋮ 5
⇒ x = 5k (k )
*) (72 - x) ⋮ 5
72 chia 5 dư 2
⇒ x chia 5 dư 3
⇒ x = 5k + 3 (k ∈ ℕ)
b) Gọi a, a + 1, a + 2 là ba số tự nhiên liên tiếp (a ∈ ℕ)
Ta có:
a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) ⋮ 3
Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
a, 90 chia hết cho x => x ∈ Ư(90) = {1;2;3;5;6;9;10;15;18;30;45;90}
b, x chia hết cho 60 => x ∈ B(60) = {0;60;120;180;240;…} mà 59 < x < 180 => x ∈ {60;120;180}
c, x là số nhỏ nhất khác 0 và x chia hết cho cả 12 và 18 => x = BCNN(12;18)
12 = 2 2 . 3 ; 18 = 2 . 3 2 ; x = BCNN(12;18) = 2 2 . 3 2 = 4.9 = 36
Ta có: BCNN(2;3)=6
U(18)=(1;-1;2;-2;3;-3;6;-6;9;-9;18;-18)
Ta có: x=6 thì 18 chia hết cho 6 và 6 chia hết cho 2 và 3
=>x=6
18 chia hết cho x-4
Hộ m với .Mình cần gấp ah 😖