K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2022

\(x^2-2x+3=\left(x^2-2x+1\right)+2-\left(x-1\right)\)

\(x^2-2x+3-x^2+2x-1-2+x-1=0\)

\(x-1=0\)

\(x=1\)

14 tháng 7 2022

`x^{2}-2x+3=(x^2-2x+1)+2-(x-1)`

`<=>x^2-2x+3=x^2-2x+1+2-x+1`

`<=>x=0`

Vậy S={`0`}

10 tháng 9 2020

a) \(\left(2x-5\right)^2-\left(2x+3\right)\left(2x-3\right)=10\Leftrightarrow\left(4x^2-20x+25\right)-\left(4x^2-9\right)-10=0\)

\(\Leftrightarrow-20x+24=0\Leftrightarrow x=\frac{6}{5}\)

b) \(\left(4x-1\right)\left(x+2\right)-\left(2x+3\right)^2-5\left(x-1\right)=9\Leftrightarrow-10x-15=0\)

\(\Leftrightarrow x=\frac{-3}{2}\)

c) \(\left(x+1\right)^3-\left(x-1\right)^3-2=6\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-8=0\)

\(\Leftrightarrow6x^2-6=0\Leftrightarrow x=\pm1\)

d) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x+1\right)\left(x^2-x+1\right)-3\left(-x-2\right)=5\)

\(\Leftrightarrow\left(x^3+8\right)-\left(x^3+1\right)+3x+6=5\Leftrightarrow3x+8=0\Leftrightarrow x=\frac{-8}{3}\)

a: \(=25x^4-10x^3+5x^2\)

c: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)

28 tháng 9 2021

=0 bạn nha

5 tháng 10 2020

a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)

\(\Leftrightarrow2x=-40\)

\(\Rightarrow x=-20\)

b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)

\(\Leftrightarrow x^3+27-x^3+4x=15\)

\(\Leftrightarrow4x=-12\)

\(\Rightarrow x=-3\)

c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)

\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)

\(\Leftrightarrow-14x=14\)

\(\Rightarrow x=-1\)

5 tháng 10 2020

d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)

\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)

\(\Leftrightarrow17x=-34\)

\(\Rightarrow x=-2\)

e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)

\(\Leftrightarrow24x=24\)

\(\Rightarrow x=1\)

21 tháng 9 2020

a) 2( x - 1 )2 - 4( 3 + x )2 + 2x( x - 5 )

= 2( x2 - 2x + 1 ) - 4( 9 + 6x + x2 ) + 2x2 - 10x

= 2x2 - 4x + 2 - 36 - 24x - 4x2 + 2x2 - 10x

= ( 2x2 - 4x2 + 2x2 ) + ( -4x - 24x - 10x ) + ( 2 - 36 )

= -38x - 34

b) 2( 2x + 5 )2 - 3( 4x + 1 )( 1 - 4x )

= 2( 4x2 + 20x + 25 ) + 3( 4x + 1 )( 4x - 1 )

= 8x2 + 40x + 50 + 3( 16x2 - 1 )

= 8x2 + 40x + 50 + 48x2 - 3

= 56x2 + 40x + 47

c) ( x - 1 )3 - x( x - 3 )2 + 1

= x3 - 3x2 + 3x - 1 - x( x2 - 6x + 9 ) + 1

= x3 - 3x2 + 3x - x3 + 6x2 - 9x

= 3x2 - 6x

d) ( x + 2 )3 - x2( x + 6 ) 

= x3 + 6x2 + 12x + 8 - x3 - 6x2

= 12x + 8

e) ( x - 2 )( x + 2 ) - ( x + 1 )3 - 2x( x - 1 )2

= x2 - 4 - ( x3 + 3x2 + 3x + 1 ) - 2x( x2 - 2x + 1 )

= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x

= -3x3 + 2x2 - 5x - 5 

f) ( a + b - c )2 - ( b - c )2 - 2a( b - c )

= [ ( a + b ) - c ]2 - ( b2 - 2bc + c2 ) - 2ab + 2ac

= [ ( a + b )2 - 2( a + b )c + c2 ] - b2 + 2bc - c2 - 2ab + 2ac

= a2 + 2ab + b2 - 2ac - 2bc + c2 - b2 + 2bc - c2 - 2ab + 2ac

= a2

21 tháng 9 2020

a) \(2\left(x-1\right)^2-4\left(3+x\right)^2+2x\left(x-5\right)\)

Dùng hẳng đẳng thức thứ nhất + hai :

\(2\left(x^2-2\cdot x\cdot1+1^2\right)-4\left(3^2+2\cdot3\cdot x+x^2\right)+2x^2-10x\)

\(2\left(x^2-2x+1\right)-4\left(9+6x+x^2\right)+2x^2-10x\)

\(2x^2-4x+2-36-24x-4x^2+2x^2-10x\)

\(-38x-34\)

b) 2(2x + 5)2 - 3(4x + 1)(1 - 4x)

Dùng đẳng thức thứ 1 + 3

= 2[(2x)2 + 2.2x.5 + 52 ] - (-3)[(4x)2 - 12 ]

= 2(4x2 + 20x + 25) - (-3).(16x2 - 1)

= 8x2 + 40x + 50 - (3 - 48x2)

= 8x2 + 40x + 50 - 3 + 48x2

= 56x2 + 40x + 47

c) (x - 1)3 - x(x - 3)2 + 1

Dùng đẳng thức 2 + 5:

= x3 - 3.x2.1 + 3.x.12 - 13 - x(x2 - 2.x.3 + 32) + 1

= x3 - 3x2 + 3x - 1 - x3 + 6x2 - 9x + 1

= (x3 - x3) + (-3x2 + 6x2) + (3x - 9x) + (-1 + 1)

= 3x2 - 6x

d) (x + 2)3 - x2(x + 6)

= x3 + 3.x2.2 + 3.x.22 + 23 - x3 - 6x2

= x3 + 6x2 + 12x + 8 - x3 - 6x2

= (x3 - x3) + (6x2 - 6x2) + 12x + 8 = 12x + 8

e) Dùng đẳng thức thứ 3,4 và 2

= x2 - 4 - (x3 + 3.x2.1 + 3.x.12 + 13) - 2x(x2 - 2.x.1 + 12)

= x2 - 4 - (x3 + 3x2 + 3x + 1) - 2x3 + 4x2 - 2x

= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x

= (x2 - 3x2 + 4x2) + (-4 - 1) + (-x3 - 2x3) + (-3x - 2x)

= 2x2 - 5 - 3x3 - 5x

f) Đặt \(a+b-c=A\)

\(b-c=B\)

\(A^2-B^2-2AB\)

\(A^2-2AB+\left(-B\right)^2\)

\(=A^2-2AB+B^2\)

= (A - B)2

= (a + b - c - (b - c))2

= (a + b - c - b + c)2

= a2

24 tháng 9 2020

1) x2 + x2y - y - 1

= x2( 1 + y ) - ( 1 + y )

= ( 1 + y )( x2 - 1 )

= ( 1 + y )( x - 1 )( x + 1 )

2) x2 + y2 - 2xy - 25

= ( x2 - 2xy + y2 ) - 25

= ( x - y )2 - 52

= ( x - y - 5 )( x - y + 5 )

3) ( 2x - 1 )( x2 + 2x - 1 ) - ( 1 - 2x )( x - 3 )

= ( 2x - 1 )( x2 + 2x - 1 ) + ( 2x - 1 )( x - 3 )

= ( 2x - 1 )( x2 + 2x - 1 + x - 3 )

= ( 2x - 1 )( x2 + 3x - 4 )

= ( 2x - 1 )( x2 - x + 4x - 4 )

= ( 2x - 1 )[ x( x - 1 ) + 4( x - 1 ) ]

= ( 2x - 1 )( x - 1 )( x + 4 )

4) a2 + x2 - 16 + 2ax

= ( a2 + 2ax + x2 ) - 16

= ( a + x )2 - 42

= ( a + x - 4 )( a + x + 4 )