rút gọn biểu thức
M=(2ab+b)^2 - (b-2a)^2
N=(3a+2)^2+2(2+3a)(1-2b)+(2b-1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = 8ab;
b) N = [ ( 3 a + + 2 ) + ( 1 – 2 b ) ] 2 = ( 3 a – 2 b + 3 ) 2 .
Bài 2:
a) \(\left(x+5\right)^2=x^2+10x+25\)
b) \(\left(\dfrac{5}{2}-t\right)^2=\dfrac{25}{4}-5t+t^2\)
c) \(\left(2u+3v\right)^2=4u^2+12uv+9v^2\)
d) \(\left(-\dfrac{1}{8}a+\dfrac{2}{3}bc\right)^2=\dfrac{1}{64}a^2-\dfrac{1}{6}abc+\dfrac{4}{9}b^2c^2\)
e) \(\left(\dfrac{x}{y}-\dfrac{1}{z}\right)^2=\dfrac{x^2}{y^2}-\dfrac{2x}{yz}+\dfrac{1}{z^2}\)
f) \(\left(\dfrac{mn}{4}-\dfrac{x}{6}\right)\left(\dfrac{mn}{4}+\dfrac{x}{6}\right)=\dfrac{m^2n^2}{16}-\dfrac{x^2}{36}\)
Bài 1:
$M=(2a+b)^2-(b-2a)^2=[(2a+b)-(b-2a)][(2a+b)+(b-2a)]$
$=4a.2b=8ab$
$N=(3a+1)^2+2a(1-2b)+(2b-1)^2$
$=(9a^2+6a+1)+2a-4ab+(4b^2-4b+1)$
$=9a^2+8a+4b^2-4b-4ab+2$
$A=(m-n)^2+4mn=m^2-2mn+n^2+4mn$
$=m^2+2mn+n^2=(m+n)^2$
a: \(=ab\cdot\dfrac{4}{3}a^2b^4\cdot7abc=\dfrac{28}{3}a^4b^6c\)
b: \(a^3b^3\cdot a^2b^2c=a^5b^5c\)
c: \(=\dfrac{2}{3}a^3b\cdot\dfrac{-1}{2}ab\cdot a^2b=\dfrac{-1}{3}a^6b^3\)
d: \(=-\dfrac{7}{3}a^3c^2\cdot\dfrac{1}{7}ac^2\cdot6abc=-2a^5bc^5\)
e: \(=\dfrac{-3}{2}\cdot\dfrac{1}{4}\cdot ab^2\cdot bca^2\cdot b=\dfrac{-3}{8}a^3b^4c\)
a) \(3a-3b+a^2-2ab+b^2\)
\(=3\left(a-b\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a-b+3\right)\)
a)
3.(a-b) +2.(a-b ) =5 .(a-b )
câu b làm tương tự nha nhóm a^2 -2ab +b^2 vào 1nhoms và làm như câu a
\(R=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}:\frac{3a^2-4ab+b^2}{3a^2+2ab-b^2}\)
\(R=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}.\frac{3a^2+2ab-b^2}{3a^2-4ab+b^2}\)
\(R=\frac{\left(3a+b\right)\left(a-b\right)}{\left(a+b\right)\left(2a-b\right)}.\frac{\left(a+b\right)\left(3a-b\right)}{\left(a-b\right)\left(3a-b\right)}\)
\(R=\frac{3a+b}{2a-b}\)
Lời giải:
$M=(2ab+b)^2-(b-2a)^2=(2ab+b-b+2a)(2ab+b+b-2a)$
$=(2ab+2a)(2ab+2b-2a)$
$=4a(b+1)(ab+b-a)$
$N=(3a+2)^2+2(2+3a)(1-2b)+(2b-1)^2$
$=(3a+2)^2-2(3a+2)(2b-1)+(2b-1)^2$
$=[(3a+2)-(2b-1)]^2=(3a+2-2b+1)^2=(3a-2b+3)^2$