K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=1\cdot2+2\cdot3+...+151\cdot152\)

\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)

\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)

\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)

\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)

\(=151\cdot76+151\cdot7676=1170552\)

\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)

\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)

\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)

\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)

\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)

\(=4\left[506\cdot1013+345990150\right]\)

\(=1386010912\)

\(M=1^2+2^2+...+2024^2\)

\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)

\(=2024\cdot2025\cdot\dfrac{4049}{6}\)

=2765871900

\(N=1^3+2^3+...+100^3\)

\(=\left(1+2+3+...+100\right)^2\)

\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)

\(=\left[50\cdot101\right]^2=5050^2\)

\(Q=1^3+2^3+...+2024^3\)

\(=\left(1+2+3+...+2024\right)^2\)

\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)

\(=\left[1012\left(2024+1\right)\right]^2\)

\(=2049300^2\)

26 tháng 9 2021

\(a,A=1\cdot2+2\cdot3+...+98\cdot99\\ 3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+98\cdot99\cdot3\\ 3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\left(5-2\right)+...+98\cdot99\left(100-97\right)\\ 3A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+3\cdot4\cdot5-...-97\cdot98\cdot99+98\cdot99\cdot100\\ 3A=98\cdot99\cdot100=970200\\ A=323400\)

\(b,B=1^2+2^2+3^3+...+98^2\\ B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+98\left(99-1\right)\\ B=\left(1\cdot2+2\cdot3+3\cdot4+...+98\cdot99\right)-\left(1+2+...+98\right)\\ B=323400-\left[\left(98+1\right)\left(98-1+1\right):2\right]\\ B=323400-4851=318549\\ c,C=1\cdot99+2\left(99-1\right)+3\left(99-2\right)+...+98\left(99-97\right)+99\left(99-98\right)\\ C=1\cdot99+2\cdot99-1\cdot2+3\cdot99-2\cdot3+...+98\cdot99-97\cdot98+99\cdot99-98\cdot99\\ C=99\left(1+2+...+99\right)-\left(1\cdot2+2\cdot3+...+98\cdot99\right)\\ C=99\left[\left(99+1\right)\left(99-1+1\right):2\right]-323400\\ C=490050-323400=166650\)

26 tháng 9 2021

https://hoc24.vn/cau-hoi/a-tinh-tong-a1223349899b-su-dung-ket-qua-cau-a-tinh-b122232972982c-su-dung-ket-qua-cau-a-tinh-c1992983979829.2030286199021

:vv hỏi hoài z?

21 tháng 3 2023

 

chi tiết hơn được ko bạn?

 

16 tháng 8 2023

Bài 1:

13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)

13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)

13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)

13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp

 

16 tháng 8 2023

Bài 2:

1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)

100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)

1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)

107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)

11 + 112 + 113 = \(\overline{..1}\)\(\overline{..1}\)\(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)

 

11 tháng 9 2015

cau hỏi tương tự ko có mà!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 1 2022

3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)

3C=2014.2015.2016

C=2014.2015.2016:3

10 tháng 3 2023

a)

`1/1-1/2`

`=2/2-1/2`

`=1/2`

b)

`1/(1*2)+1/(2*3)`

`=1/1-1/2+1/2-1/3`

`=1/1-1/3`

`=3/3-1/3`

`=2/3`

c)

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)

d) 

\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?

\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)

 

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

10 tháng 7 2016

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

10 tháng 7 2016

Ta có:3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)