K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

cau nao

28 tháng 11 2016

Bài này nè. S=1+3+3^2+...+3^99

Tìm số dư trong phép chia S chia 13

22 tháng 3 2017

1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số

Gọi số phải tìm là A

Ta có A + 4 chia hết cho 5 , 7 , 9

Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315

Do đó A = 315 - 4 = 311

2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100

S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )

S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )

S = 1.30 +...+2^96.30

S = ( 1 +...+2^96 )30

Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15

Hay S chia hết cho 15

b) Vì S cha hết cho 30 nên S chia hết cho 10

Suy ra S có tận cùng là 0

c) S = 2^1 + 2^2 + 2^3 +...+2^100

2S = 2^2 + 2^3 + 2^4 +...+ 2^101

2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )

S = 2^101 - 2^1

S = 2^101 - 2

22 tháng 3 2017

1. 158

2a. 0 ( doan nha )

b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )

      = 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)

      = 2.15+2^5.15+...+2^97.15

      = 15.(2+2^5+...+2^97) chia het 15

c.2^101-2^1

3. chiu !

AH
Akai Haruma
Giáo viên
6 tháng 2

Lời giải:

$C=1+3^2+3^3+(3^4+3^5+3^6)+(3^7+3^8+3^9)+....+(3^{97}+3^{98}+3^{99})$

$=37+3^4(1+3+3^2)+3^7(1+3+3^2)+...+3^{97}(1+3+3^2)$

$=11+13.2+(1+3+3^2)(3^4+3^7+...+3^{97})$
$=11+13.2+13(3^4+3^7+...+3^{97})$

$=11+13(2+3^4+3^7+....+3^{97})$

$\Rightarrow C$ chia $13$ dư $11$.

2 tháng 9 2016

1) S = 1 + 2 + 2^2 + ... + 2^99 ( có 100 số; 100 chia hết cho 4)

S = (1 + 2) + (2^2 + 2^3) + ... + (2^98 + 2^99)

S = 3 + 2^2.(1 + 2) + ... + 2^98.(1 + 2)

S = 3 + 2^2.3 + ... + 2^98.3

S = 3.(1 + 2^2 + ... + 2^98) chia hết cho 3 ( đpcm)

3) lm tươg tự câu 1, nhóm 4 số 

3) Để thừa ra số 1 đầu tin, típ theo nhóm 3 số 

KL: S chia 7 dư 1

22 tháng 10 2021

S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)

\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)

Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)

Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20

\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4

\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1

19 tháng 12 2016

S = 1 + ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 398 + 399 + 3100 )

= 1 + 3 ( 1 + 3 + 32 ) + 34 ( 1 + 3 + 32 ) + .... + 398 ( 1 + 3 + 32 )

= 1 + 3 ( 1 + 3 + 9 ) + 34 ( 1 + 3 + 9 ) + ..... + 398 ( 1 + 3 + 9 )

= 1 + 3.13 + 34 .13 +  .... + 398.13

= 1 + 13 ( 3 + 34 + ... + 398 ) 

Vì 13 ( 3 + 34 + ... + 398 ) chia hét cho 13 => 1 + 13 ( 3 + 34 + ... + 398 ) chia 13 dư 1

hay S chia 13 dư 1

21 tháng 12 2016

Sao cô giáo minh lại bảo số dư là 4 cơ:

ta có 1+3+3\(^2\)+3\(^3\)+...+3\(^{100}\)

S=(1+3)+(3\(^2\)+3\(^3\))+..+(3\(^{99}\)+3\(^{100}\))

=4.13.(3\(^2\)+...+3\(^{98}\))

Vậy S chia cho 13 dư4

31 tháng 10 2023

S = 3 + 3² + 3³ + ... + 3⁹⁹ + 3¹⁰⁰

= 3 + (3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷) + ... + (3⁹⁸ + 3⁹⁹ + 3¹⁰⁰)

= 3 + 3².(1 + 3 + 3²) + 3⁵.(1 + 3 + 3²) + ... + 3⁹⁸.(1 + 3 + 3²)

= 3 + 3².13 + 3⁵.13 + ... + 3⁹⁸.13

= 3 + 13.(3² + 3⁵ + ... + 3⁹⁸)

Do 13.(3² + 3⁵ + ... + 3⁹⁸) ⋮ 13

⇒ 3 + 13.(3² + 3⁵ + ... + 98) chia 13 dư 3

Vậy S chia 13 dư 3