Ai giải giúp nính nhé
Bài S =1+3+3^2+...+3^99
Tìm số dư s chia 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
Lời giải:
$C=1+3^2+3^3+(3^4+3^5+3^6)+(3^7+3^8+3^9)+....+(3^{97}+3^{98}+3^{99})$
$=37+3^4(1+3+3^2)+3^7(1+3+3^2)+...+3^{97}(1+3+3^2)$
$=11+13.2+(1+3+3^2)(3^4+3^7+...+3^{97})$
$=11+13.2+13(3^4+3^7+...+3^{97})$
$=11+13(2+3^4+3^7+....+3^{97})$
$\Rightarrow C$ chia $13$ dư $11$.
1) S = 1 + 2 + 2^2 + ... + 2^99 ( có 100 số; 100 chia hết cho 4)
S = (1 + 2) + (2^2 + 2^3) + ... + (2^98 + 2^99)
S = 3 + 2^2.(1 + 2) + ... + 2^98.(1 + 2)
S = 3 + 2^2.3 + ... + 2^98.3
S = 3.(1 + 2^2 + ... + 2^98) chia hết cho 3 ( đpcm)
3) lm tươg tự câu 1, nhóm 4 số
3) Để thừa ra số 1 đầu tin, típ theo nhóm 3 số
KL: S chia 7 dư 1
S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)
\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)
Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)
Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20
\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4
\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1
S = 1 + ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 398 + 399 + 3100 )
= 1 + 3 ( 1 + 3 + 32 ) + 34 ( 1 + 3 + 32 ) + .... + 398 ( 1 + 3 + 32 )
= 1 + 3 ( 1 + 3 + 9 ) + 34 ( 1 + 3 + 9 ) + ..... + 398 ( 1 + 3 + 9 )
= 1 + 3.13 + 34 .13 + .... + 398.13
= 1 + 13 ( 3 + 34 + ... + 398 )
Vì 13 ( 3 + 34 + ... + 398 ) chia hét cho 13 => 1 + 13 ( 3 + 34 + ... + 398 ) chia 13 dư 1
hay S chia 13 dư 1
Sao cô giáo minh lại bảo số dư là 4 cơ:
ta có 1+3+3\(^2\)+3\(^3\)+...+3\(^{100}\)
S=(1+3)+(3\(^2\)+3\(^3\))+..+(3\(^{99}\)+3\(^{100}\))
=4.13.(3\(^2\)+...+3\(^{98}\))
Vậy S chia cho 13 dư4
S = 3 + 3² + 3³ + ... + 3⁹⁹ + 3¹⁰⁰
= 3 + (3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷) + ... + (3⁹⁸ + 3⁹⁹ + 3¹⁰⁰)
= 3 + 3².(1 + 3 + 3²) + 3⁵.(1 + 3 + 3²) + ... + 3⁹⁸.(1 + 3 + 3²)
= 3 + 3².13 + 3⁵.13 + ... + 3⁹⁸.13
= 3 + 13.(3² + 3⁵ + ... + 3⁹⁸)
Do 13.(3² + 3⁵ + ... + 3⁹⁸) ⋮ 13
⇒ 3 + 13.(3² + 3⁵ + ... + 98) chia 13 dư 3
Vậy S chia 13 dư 3
cau nao
Bài này nè. S=1+3+3^2+...+3^99
Tìm số dư trong phép chia S chia 13