K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2022

ĐKXĐ : \(x\le28\)

Đặt \(\sqrt[3]{x+5}=a;\sqrt{28-x}=b\left(b\ge0;a\le7\right)\)

Được a + b = 7 <=> b = 7 - a 

Lại có a3 + b2 = 33

<=> a3 + (7 - a)2 = 33

<=> a3 + a2 - 14a + 16 = 0

<=> a3 - 8 + a2 - 2a - 12a + 24 = 0

<=> (a - 2)(a2 + 3a - 8) = 0

<=> \(\left[{}\begin{matrix}a=2\\a^2+3a-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=2\\a=\dfrac{\pm\sqrt{41}-3}{2}\end{matrix}\right.\)

Khi a = \(\dfrac{\sqrt{41}-3}{2}\Leftrightarrow b=\dfrac{17-\sqrt{41}}{2}\)

<=> \(x=28-\left(\dfrac{17-\sqrt{41}}{2}\right)^2=\dfrac{17\sqrt{41}-109}{2}\)(tm)

 

Khi a = \(\dfrac{-\sqrt{41}-3}{2}\Leftrightarrow b=\dfrac{17+\sqrt{41}}{2}\)

\(x=28-\left(\dfrac{17+\sqrt{41}}{2}\right)^2=\dfrac{-17\sqrt{41}-109}{2}\) (tm) 

a = 2 => x = 3 (tm)

Vậy tập nghiệm phương trình \(S=\left\{\dfrac{-17\sqrt{41}-109}{2};\dfrac{17\sqrt{41}-109}{2};3\right\}\)

5 tháng 9 2016

a)2-x^2+3x-4<0

x^2-3x+2>0

x^2-2x-x+2>0

x(x-2)-(x-2)>0

(x-1)(x-2)>0

<=>TH1:   x-1 >0

                  vàx-2>0

=>x>1và x>2 =>x>2

TH2 :     x-1<0 và x-2<0

=>x<1 và x<2=>x<1

vậy với x>2 hoac x<1 là no của bất phuong trinh 

leuleu

leuleu

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Lời giải:

a. ĐKXĐ: $x\geq 0$

$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$

$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$

$\Leftrightarrow 13\sqrt{2x}=28$

$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$

$\Leftrightarrow 2x=\frac{784}{169}$

$\Leftrightarrow x=\frac{392}{169}$

b. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x-5=4$

$\Leftrightarrow x=9$ (tm)

c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$

PT $\Leftrightarrow \frac{3x-2}{x+1}=9$

$\Rightarrow 3x-2=9(x+1)$

$\Leftrightarrow x=\frac{-11}{6}$ (tm)

28 tháng 7 2021

Bài 1:

a. Ta có \(\sqrt{\dfrac{2}{x^2}}=\dfrac{\sqrt{2}}{\left|x\right|}=\dfrac{\sqrt{2}}{x}\) ,để biểu thức có nghĩa thì \(x>0\)

b. Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) có nghĩa thì \(\dfrac{-3}{3x+5}\ge0\) 

mà \(-3< 0\Rightarrow3x+5< 0\) \(\Rightarrow x< \dfrac{-5}{3}\)

Bài 2:

a. \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\dfrac{-\sqrt{2}}{-1}=\sqrt{2}\)

b. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=14-14\sqrt{2}+7+14\sqrt{2}\)

\(=21\)

c. \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

\(=14-6\sqrt{28}+18+6\sqrt{28}\)

\(=32\)

 

9 tháng 2 2017

Theo đầu bài x là một bội chung của 12, 21, 28, thỏa mãn điều kiện 150 < x < 300. Ta có BCNN (12, 21, 28) = 84. Do đó bội chung thỏa mãn điều kiện đã cho là 84 . 2 = 168.

Vậy x = 168.

9 tháng 2 2017

Theo đầu bài x là một bội chung của 12, 21, 28, thỏa mãn điều kiện 150 < x < 300. Ta có BCNN (12, 21, 28) = 84. Do đó bội chung thỏa mãn điều kiện đã cho là 84 . 2 = 168.

Vậy x = 168.

24 tháng 7 2023

9) Sửa: \(2\sqrt{8\sqrt{3}}-2\sqrt{5\text{ }\sqrt{3}}-3\sqrt{20\sqrt{3}}\)

\(=2\sqrt{2^2\cdot2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{2^2\cdot5\sqrt{3}}\)

\(=2\cdot2\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\cdot2\sqrt{5\sqrt{3}}\)

\(=4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}\)

\(=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)

10) \(\sqrt{12x}-\sqrt{48x}-3\sqrt{3x}+27\)

\(=\sqrt{2^2\cdot3x}-\sqrt{4^2\cdot3x}-3\sqrt{3x}+27\)

\(=2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}+27\)

\(=-5\sqrt{3x}++27\)

11) \(\sqrt{18x}-5\sqrt{8x}+7\sqrt{18x}+28\)

\(=\sqrt{3^2\cdot2x}-5\sqrt{2^2\cdot2x}+7\sqrt{3^2\cdot2x}+28\)

\(=3\sqrt{2x}-5\cdot2\sqrt{2x}+7\cdot3\sqrt{2x}+28\)

\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)

\(=14\sqrt{2x}+28\)

12) \(\sqrt{45a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)

\(=\sqrt{3^2\cdot5a}-\sqrt{2^2\cdot5a}+4\sqrt{3^2\cdot5a}+\sqrt{a}\)

\(=3\sqrt{5a}-2\sqrt{5a}+4\cdot3\sqrt{5a}+\sqrt{a}\)

\(=3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)

\(=13\sqrt{5a}+\sqrt{a}\)

9 tháng 11 2021

\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)

9 tháng 10 2019

a)= \(\left(3+\sqrt{5}\right)\left(\sqrt{\left(3-\sqrt{5}\right)^2}\right)\)=\(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)=9-5=4\)

b)= \(\frac{2\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{\sqrt{2^2.7}}{2}-2\)=\(\frac{2\left(3-\sqrt{7}\right)}{9-7}+\sqrt{7}-2\)=1

c) =\(\frac{3}{3\left(\sqrt{7}-2\right)}-\frac{3}{3\left(\sqrt{7}+2\right)}\)=\(\frac{1}{\sqrt{7}-2}-\frac{1}{\sqrt{7}+2}=\frac{\sqrt{7}+2-\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}\)=\(\frac{4}{7-4}=\frac{4}{3}\)

d) =\(\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)^{ }\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{\left(88-44\sqrt{3}\right)}{25-3}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{22\left(4-2\sqrt{3}\right)}{22}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(1+\sqrt{3}\right)\left(\sqrt{3}-1\right)\)=3-1 = 2

e) = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{7\sqrt{x}-3}{x-9}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{3-\sqrt{x}}\)\(\frac{x-4\sqrt{x}+3}{x-9}+\frac{7\sqrt{x}-3}{x-9}+\sqrt{x}\)\(\frac{x+3\sqrt{x}}{x-9}+\sqrt{x}=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\sqrt{x}\)\(\frac{\sqrt{x}}{\sqrt{x}-3}+\sqrt{x}=\frac{x-2\sqrt{x}}{\sqrt{x}-3}\)

7 tháng 7 2021

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)

\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)

Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)