K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

\(12\left(3z-4y\right)=20\left(4x-5z\right)=15\left(5y-3x\right)\)

\(\Rightarrow\frac{12\left(3z-4y\right)}{60}=\frac{20\left(4x-5z\right)}{60}=\frac{15\left(5y-3x\right)}{60}\)

\(=\frac{3z-4y}{5}=\frac{4x-5z}{3}=\frac{5y-3x}{4}\)

\(\Rightarrow\frac{5.\left(3z-4y\right)}{25}=\frac{3.\left(4x-5z\right)}{9}=\frac{4.\left(5y-3x\right)}{16}\)

\(=\frac{15z-20y}{25}=\frac{12x-15z}{9}=\frac{20y-12x}{16}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{15z-20y}{25}=\frac{12x-15z}{9}=\frac{20y-12x}{16}=\frac{\left(15z-20y\right)+\left(12x-15z\right)+\left(20y-12x\right)}{25+9+16}=\frac{0}{50}=0\)

\(\Rightarrow\begin{cases}15z-20y=0\\12x-15z=0\\20y-12x=0\end{cases}\)\(\Rightarrow12x=20y=15z\)

\(\Rightarrow\frac{12x}{60}=\frac{20y}{60}=\frac{15z}{60}\)

\(=\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{16}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{25+9+16}=\frac{50}{50}=1\)

\(\Rightarrow\begin{cases}x^2=1.25=25\\y^2=1.9=9\\z^2=1.16=16\end{cases}\)\(\Rightarrow\begin{cases}x\in\left\{5;-5\right\}\\y\in\left\{3;-3\right\}\\z\in\left\{4;-4\right\}\end{cases}\)

Vậy giá trị (x;y;z) tương ứng thỏa mãn là (5;3;4) ; (-5;-3;-4)

28 tháng 11 2016

Thiên tài toán học là đây... == limdim

29 tháng 11 2016


Ta có:\(\frac{15z-20y}{\frac{5}{12}}=\frac{12x-15z}{\frac{3}{20}}=\frac{20y-12x}{\frac{4}{15}}=0\)

=>3z-4y=0,

4x-5z=0,

5y-3x=0

=>3z=4y,

4x=5z,

5y=3x.

Rồi chuyển thành tỉ số và làm tiếp

27 tháng 11 2016

Đổi thành \(\frac{3z-4y}{\frac{1}{12}}=\frac{4x-5z}{\frac{1}{20}}=\frac{5y-3x}{\frac{1}{15}}\)

Sau đó áp dụng dãy TSBN rút về x/a=y/b=z/t rồi làm tiếp

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

27 tháng 7 2018

ây trung

27 tháng 7 2018

b. Đặt x-1/2 = y+3/4 = z-5/6  = k

=> x = 2k+1

     y = 4k -3

      z = 6k+5

5z-3x-4y=50 => 5(6k+5)-3(2k+1)-4(4k-3) = 50

                   =>30k+25-6k-3-16k+12 = 50

                   =>(30k-6k-16k)+(25-3+12) = 50

                   =>8k+34 = 50

                   =>8k = 16 

                   =>k = 2

nên x = 2.2+1 = 5

       y = 4.2-3 = 5 

       z = 6.2+5 = 17

3: 10x=6y=5z

\(\Leftrightarrow\dfrac{10x}{30}=\dfrac{6y}{30}=\dfrac{5z}{30}\)

hay x/3=y/5=z/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)

Do đó: x=36; y=60; z=72

4: Ta có: 9x=3y=2z

nên \(\dfrac{9x}{18}=\dfrac{3y}{18}=\dfrac{2z}{18}\)

hay x/2=y/6=z/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-y+z}{2-6+9}=\dfrac{50}{5}=10\)

Do đó: x=20; y=60; z=90