Tìm n thuộc N biết 2.n+1 chia hết cho 6-n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
n-2 thì n-2 thuộc Ư(6) phần còn lại bàn tự làm nhé
\(a,n+6⋮n+3\)
\(\Rightarrow n+3+3⋮n+3\)
mà \(n+3⋮n+3\Rightarrow3⋮n+3\)
\(\Rightarrow n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Với n + 3 = 1 => n = -2
n + 3 = -1 => n = -4
n +3 = 3 = > n= 0
n+ 3 = -3 => n= -6
\(\Rightarrow n\in\left\{-2;-4;0;-6\right\}\)
b, \(2n+9⋮n+2\)
\(2.n+2+7⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\)
\(\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
........
bn lm như trên
\(c,2n+7⋮n+1\)
\(\Rightarrow2n+1+6⋮n+1\)
mà \(2.\left(n+1\right)⋮n+1\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)=\left\{1;-1;2;-2;6;-6\right\}\)
........ như phần vừa nãy
\(d,n+3⋮n-1\)
\(\Rightarrow n+4-1⋮n-1\)
\(\Rightarrow n-1+4\)
mà \(n-1⋮n-1\Rightarrow4⋮n-1\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
......
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3
=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}
b/ \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)
Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5
=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}
Các câu còn lại làm tương tự
a, 6 chia hết cho n-2 => n-2 thuộc Ư(6)=(1,-1,2,-2,3,-3,6,-6)
hay n thuộc (3,1,4,0,5,-1,8,-4). Mà n thuộc Z
=> n= 3,1,4,0,5,-1,8,-4)
c, 4n+3 chia hết cho 2n+1 => 2(2n+1)+1 chia hết cho 2n+1
Mà 2(2n+1) chia hết cho 2n+1 => 1 chia hết cho 2n+1 hay 2n+1 thuộc Ư(1)=(1,-1)
=> n thuộc (0,-1)
Do n thuộc Z => n=0,-1
d, 3n+1 chia hết cho 11-n => -3(11-n)+34 chia hết cho 11-n
Mà -3(11-n) chia hết cho 11-n => 34 chia hết cho 11-n hay .........( làm tương tự câu c)
a) n-2 thuộc ước của 6
Ư (6)={+-1;+-2;+-3;+-6}
n-2=1 => n=3
n-2=-1 => n=1
n-2=2 => n=4
n-2=-2 => n=0
n-2=3 => n=5
n-2=-3 => n=-1
n-2=6 => n=8
n-2=-6 => n=-4
b) do 5n chia hết cho n nên 27 phải chia hết cho n
n thuộc N nên n =1,3,9,27
và 5n< hoặc =27
suy ra n=1 hoặc 3
n=1 thỏa mãn
n=3 thỏa mãn
suy ra 2 nghiệm
c) 4n-5 chia hết cho 2n-1
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
d) 3n+1 chia hết cho 11-2n
+ 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n
Ta có :
2n+1 chi hết cho 6-n
6-n chia hết cho 6-n
=> 2 . [6-n] chia hết cho 6-n => 12- 2n chia hết cho 6-n
=> [2n+1+12-2n] chia hết cho 6-n
=> 13 chia hết cho 6-n
ta có bảng:
Vậy \(n\in\left\{7;19;5\right\}\)