K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1\cdot x_2=m^2\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2-5x_1x_2=13\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=13\)

\(\Leftrightarrow\left(-2m-2\right)^2-7\cdot m^2-13=0\)

\(\Leftrightarrow4m^2+8m+4-7m^2-13=0\)

\(\Leftrightarrow-3m^2+8m-9=0\)(1)

\(\text{Δ}=8^2-4\cdot\left(-3\right)\cdot\left(-9\right)=64-108=-44< 0\)

Vì Δ<0 nên phương trình (1) vô nghiệm

Vậy: Không có giá trị nào của m để phương trình có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_2^2-5x_1x_2=13\)

16 tháng 4 2021

undefinedundefined

CHÚC BẠN HỌC TỐT NHÉ haha

NV
26 tháng 12 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+3m-2\right)=-m+3\)

a. Phương trình có nghiệm khi:

\(\Delta'\ge0\Rightarrow m\le3\)

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3m-2\end{matrix}\right.\)

c.

\(x_1^2+x_2^2-x_1x_2=22\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=22\)

\(\Leftrightarrow4\left(m+1\right)^2-3\left(m^2+3m-2\right)=22\)

\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\left(loại\right)\\m=-3\end{matrix}\right.\)

15 tháng 4 2021

b, Để phương trình có 2 nghiệm \(\Delta\ge0\)

hay \(\left(2m+8\right)^2-4.m^2=4m^2+32m+64-4m^2=32m+64\ge0\)

\(\Leftrightarrow32m\ge64\Leftrightarrow m\ge2\)

Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+8\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

mà \(\left(x_1+x_2\right)^2=4m^2+32m+64\Rightarrow x_1^2+x_2^2=4m^2+32m+64-2x_1x_2\)

\(=4m^2+32m+64-2m^2=2m^2+32m+64\)

Lại có : \(x_1^2+x_2^2=-2\)hay \(2m^2+32m+66=0\Leftrightarrow m=-8+\sqrt{31}\left(ktm\right);m=-8-\sqrt{31}\left(ktm\right)\)

a) Thay m=8 vào phương trình, ta được:

\(x^2-2\cdot\left(8+4\right)x+8^2=0\)

\(\Leftrightarrow x^2-24x+64=0\)

\(\text{Δ}=\left(-24\right)^2-4\cdot1\cdot64=576-256=320\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{24+8\sqrt{5}}{2}=12+4\sqrt{5}\\x_2=\dfrac{24-8\sqrt{5}}{2}=12-4\sqrt{5}\end{matrix}\right.\)

Vậy: Khi m=8 thì phương trình có hai nghiệm phân biệt là \(x_1=12+4\sqrt{5};x_2=12-4\sqrt{5}\)

13 tháng 3 2022

phương trình bạn copy thiếu ak bạn ơi? 

13 tháng 3 2022

mình ghi nhầm dấu mình đã sửa lại rồi ạ

 

4 tháng 3 2022

a,để pt có nghiệm kép 

 \(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)

\(x_1=x_2=\dfrac{2m}{2}=m=1\)

b, để pt có nghiệm \(m\ge1\)

c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)

Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)

\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)

NV
23 tháng 2 2021

\(\Delta=9-4\left(-m^2+m+2\right)=4m^2-4m+1=\left(2m-1\right)^2\)

Pt có 2 nghiệm pb khi \(m\ne\dfrac{1}{2}\)

Do vai trò của 2 nghiệm là như nhau, giả sử: \(\left\{{}\begin{matrix}x_1=\dfrac{3-\left(2m-1\right)}{2}=2-m\\x_2=\dfrac{3+2m-1}{2}=m+1\end{matrix}\right.\)

\(x_1^2+x_2^2=5\Leftrightarrow\left(2-m\right)^2+\left(m+1\right)^2=5\)

\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

22 tháng 8 2023

\(\Delta'=\left[-\left(m+1\right)^2\right]-\left(m^2-1\right)\\ =m^2+2m+1-m^2+1\\ =2m+2\)

Để PT có 2 nghiệm phân biệt thì: \(\Delta'>0\)

\(\Leftrightarrow2m+2>0\\\Leftrightarrow2m>-2\\ \Leftrightarrow m>-1 \)

Theo vi ét có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1x_2=\dfrac{c}{a}=m^2-1\end{matrix}\right.\)

Theo đề có:

\(x_1^2+x_2^2=x_1x_2+8\\ \Leftrightarrow x_1^2+x_2^2-x_1x_2-8=0\\ \Leftrightarrow x_1^2+x_2^2+2x_1x_2-x_1x_2-2x_1x_2-8=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-8=0\\ \Leftrightarrow\left(2m+2\right)^2-3\left(m^2-1\right)-8=0\\ \Leftrightarrow4m^2+8m+4-3m^2+3-8\\ \Leftrightarrow m^2+8m-1=0 \)

\(\Delta=8^2-4.-1=64+4=68\) > 0

\(\Rightarrow m_1=\dfrac{-8+\sqrt{68}}{2}=-4+\sqrt{17}\left(nhận\right)\)

\(m_2=\dfrac{-8-\sqrt{68}}{2}=-4-\sqrt{17}\left(loại\right)\)

Vậy để phương trình có hai nghiệm phân biệt thỏa mãn x12 + x22 = x1x2 +8 thì m có giá trị là \(-4+\sqrt{17}\)

$HaNa$

Δ=(2m+2)^2-4(m^2-1)

=4m^2+8m+4-4m^2+4=8m+8

Để phương trình có hai nghiệm phân biệt thì 8m+8>0

=>m>-1

x1^2+x2^2=x1x2+8

=>(x1+x2)^2-2x1x2-x1x2=8

=>(2m+2)^2-3(m^2-1)-8=0

=>4m^2+8m+4-3m^2+3-8=0

=>m^2+8m-1=0

=>m=-4+căn 17(nhận) hoặc m=-4-căn 17(loại)

26 tháng 1 2022

a, Thay m = -2 ta được : 

x^2 + 6x + 3 = 0 

\(\Leftrightarrow x=-3+\sqrt{6};x=-3-\sqrt{6}\)

b, Để pt có 2 nghiệm 

\(\Delta'=\left(m-1\right)^2-\left(-m+1\right)=m^2-2m+1+m-1=m^2-m\)> 0 

Theo Viet : \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)^2+5x_1x_2=9\)

\(\Leftrightarrow4\left(m-1\right)^2+5\left(-m+1\right)=9\)

\(\Leftrightarrow4m^2-8m+4-5m+5=9\Leftrightarrow4m^2-13m=0\)

\(\Leftrightarrow m\left(4m-13\right)=0\Leftrightarrow m=0\left(ktm\right);m=\dfrac{13}{4}\)(tm) 

26 tháng 1 2022

a, Thay  m=-2 vào pt ta có:
\(x^2-2\left(m-1\right)x-m+1=0\\ \Leftrightarrow x^2-2\left(-2-1\right)x-\left(-2\right)+1=0\\ \Leftrightarrow x^2+6x+3=0\\ \Leftrightarrow\left(x^2+6x+9\right)-6=0\\ \Leftrightarrow\left(x+3\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+3-\sqrt{6}\right)\left(x+3+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{6}\\x=-3-\sqrt{6}\end{matrix}\right.\)

 \(b,\Delta'=\left[-\left(m-1\right)\right]^2-\left(-m+1\right)\\ =m^2-2m+1+m-1\\ =m^2-m\)

Để pt có 2 nghiệm thì \(\) \(\Delta'\ge0\Leftrightarrow m^2-m\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)

\(x_1^2+x_2^2+7x_1x_2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2+5x_1x_2=9\\ \Leftrightarrow\left(2m-2\right)^2+5\left(-m+1\right)=9\\ \Leftrightarrow4m^2-8m+4-5m+5-9=0\\ \Leftrightarrow4m^2-13m=0\\ \Leftrightarrow m\left(4m-13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=\dfrac{13}{4}\left(tm\right)\end{matrix}\right.\)

a: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(m^2-4m+5\right)\)

\(=4\left(m+1\right)^2-4\left(m^2-4m+5\right)\)

\(=4m^2+8m+4-4m^2+16m-20\)

=24m-16

Để phương trình có hai nghiệm thì Δ>=0

=>24m-16>=0

=>24m>=16

=>\(m>=\dfrac{2}{3}\)

b: Bạn xem lại đề nha bạn

30 tháng 1 2024

dạ câu b đổi lại thành + ý ạ