K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải: 

Áp dụng BĐT Bunhiacopxky:

$[(x+\frac{1}{x})^2+(y+\frac{1}{y})^2](1+1)\geq (x+\frac{1}{x}+y+\frac{1}{y})^2$

$\Leftrightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(x+y+\frac{1}{x}+\frac{1}{y})^2=\frac{1}{2}(1+\frac{1}{xy})^2$

Mà: 
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$ theo BĐT Cô-si

$\Rightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(1+\frac{1}{\frac{1}{4}})^2=\frac{25}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$ 

5 tháng 6 2021

Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)

Dấu "=" \(x=y=\dfrac{1}{2}\)

5 tháng 6 2021

Đăng cho vui :))

|x+25|+|−y+5|=0⇒|x+25|=0 và |−y+5|=0+) |x+25|=0⇒x+25=0⇒x=−25+) |−y+5|=0⇒−y+5=0⇒−y=−5⇒y=5Vậy cặp số (x;y) là (−25;5) Những câu b-f thì chia ra làm 2 vế rồi tínhg thì tìm ước rồi lập bảng trường hợp trong ước h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ta có một số trường hợp sau...
Đọc tiếp

|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-|x+25|+|−y+5|=0

⇒|x+25|=0 và |−y+5|=0

+) |x+25|=0

⇒x+25=0

⇒x=−25

+) |−y+5|=0

⇒−y+5=0

⇒−y=−5

⇒y=5

Vậy cặp số (x;y) là (−25;5)

 

Những câu b-f thì chia ra làm 2 vế rồi tính

g thì tìm ước rồi lập bảng trường hợp trong ước

 

h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42

⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)

Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}

Ta có một số trường hợp sau :

2x−12x−11-12-23-3
(4y−2)=2(2y−1)(4y−2)=2(2y−1)-11-22-
2
3 tháng 2 2021

nó khó nhìn thiệt ha

3 tháng 2 2021

định châm chọc mình làm khó coi à

mình có bt đâu tự nhiên nó thế 

ai mà bt đc giờleu

4 tháng 4 2022

bn có giải đc ko?

4 tháng 4 2022

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

13 tháng 10 2017

 dễ cm bđt: x²+y² ≥ (x+y)²/2, khai triễn là ra hằng đẳng đúng, dấu "=" khi x = y 
ad: P = (x+1/x)² + (y+1/y)² ≥ [x+1/x + y+1/y]²/2 = [(x+y) + (x+y)/xy]²/2 (*) 
bđt côsi: 1 = x+y ≥ 2√(xy) => 1 ≥ 4xy => 1/xy ≥ 4 
thay vào (*): P ≥ [1 + 1/xy]²/2 ≥ [1 + 4]²/2 = 25/2 (đpcm), dấu "=" khi x = y = 1/2 

25 tháng 2 2020

Đặt \(P=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

Áp dụng bđt bunhiacopxki ta có:

\(\left[\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)\right]^2\)

\(\Leftrightarrow2P\ge\left(1+\frac{1}{x}+\frac{1}{y}\right)^2\)(1)

Ta có BĐT:\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)( bạn tự CM = cách chuyển vế nhé )

Áp dụng bđt cô si cho 2 số dương x,y ta có:
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge4\)(2)

Thay (2) vào (1) ta được:

\(2P\ge25\)

\(\Rightarrow P\ge\frac{25}{2}\left(đpcm\right)\)

13 tháng 12 2021

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

13 tháng 12 2021

Lm dùm mik bài dưới lun vs

8 tháng 2 2021

dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé