tìm x biết a^3-x-x^3+a=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(x+3\sqrt{x}=0\)
\(ĐK:x\ge0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\)
\(\Leftrightarrow x=0\) ( vì \(\sqrt{x}+3\ge3>0\) )
b.\(x-3\sqrt{x}=0\)
\(ĐK:x\ge0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
Bài 1:
a)\(\begin{cases}\left(x-3\right)^2+\left(y+2\right)^2=0\\\begin{cases}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=-2\end{cases}\)
b) tương tự
b) (x-12+y)200+(x-4-y)200= 0
\(\begin{cases}\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\\\begin{cases}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=12\left(1\right)\\x-y=4\left(2\right)\end{cases}\)
Trừ theo vế của (1) và (2) ta được:
\(2y=8\Rightarrow y=4\)\(\Rightarrow\begin{cases}x+4=12\\x-4=4\end{cases}\)\(\Rightarrow x=8\)
Vậy x=8; y=4
\(a,\left(x+2\right)^{10}+\left(x+2\right)^8=0\\ \Leftrightarrow\left(x+2\right)^8\left[\left(x+2\right)^2+1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)^8=0\\\left(x+2\right)^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\\left(x+2\right)^2=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\end{matrix}\right.\\ b,\left(x+3\right)^{10}-\left(x+3\right)^8=0\\ \Leftrightarrow\left(x+3\right)^8\left[\left(x+3\right)^2-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)^8=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x+3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x+3=1\\x+3=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\\x=-4\end{matrix}\right.\)
\(a^3-x-x^3+a=0\)
\(\Leftrightarrow a^3-x^3+\left(a-x\right)=0\)
\(\Leftrightarrow\left(a-x\right)\left(a^2+ax+x^2\right)+\left(a-x\right)=0\)
\(\Leftrightarrow\left(a-x\right)\left(a^2+ax+x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\a^2+ax+x^2+1=0\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow a^2+ax+x^2+1=0\)
Ta có:\(a^2+ax+x^2+1=a^2+2.a.\dfrac{1}{2}x+\dfrac{1}{4}x^2+\dfrac{3}{4}y^2+1\)
\(=\left(a+\dfrac{1}{2}x\right)^2+\dfrac{3}{4}y^2+1>0\)
\(\Rightarrow\left(2\right)\) vô lý
Vậy \(a=x\)