Tìm m để phương trình : x^2 -4x -m^2 +3=0 .Có 2 nghiệm phân biệt x1,x2 sao cho :
x2=3x1 ( Hệ thức không đối xứng )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow\left(-2\right)^2-1\left(-m^2+3\right)>0\)
\(\Leftrightarrow-1< m< 1\)
Ta có: \(x_2=3x_1\)
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\left(1\right)\\x_1x_2=\frac{c}{a}=-m^2+3\left(2\right)\end{cases}}\)
Từ bài ra \(x_2=3x_1\) thay vào (1) và (2), ta có:
\(\left(1\right)\Leftrightarrow x_1+3x_1=4\)
\(\Leftrightarrow4x_1=4\)
\(\Leftrightarrow x_1=1\)
\(\Leftrightarrow x_2=3.1=3\)
\(\left(2\right)\Leftrightarrow3.1=-m^2+3\)
\(\Leftrightarrow3=-m^2+3\)
\(\Leftrightarrow m^2=0\)
\(\Leftrightarrow m=0\) (thỏa mãn)
\(\Delta'=\left(m-1\right)^2-\left(m^2+m\right)=-3m+1>0\Rightarrow m< \dfrac{1}{3}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{x_1+x_2+2}{2}\\x_1x_2=m^2+m\end{matrix}\right.\)
\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2+2}{2}\right)^2+\dfrac{x_1+x_2+2}{2}\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m (bạn có thể rút gọn thêm nếu cần)
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Lời giải:
Xin chỉnh sửa lại chút, tìm $k$, chứ không phải tìm $m$.
PT $\Leftrightarrow x^2-(6k-2)=0\Leftrightarrow x^2=6k-2$
Để pt có 2 nghiệm phân biệt thì $6k-2>0\Leftrightarrow k>\frac{1}{3}$
Khi đó:
$x_1=\sqrt{6k-2}$ và $x_2=-\sqrt{6k-2}$
Để $3x_1-x_2=2$
$\Leftrightarrow 3\sqrt{6k-2}+\sqrt{6k-2}=2$
$\Leftrightarrow \sqrt{6k-2}=\frac{1}{2}\Rightarrow k=\frac{3}{8}$
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)
- Xét phương trình đề cho có :
\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)
\(=m^2-3m+3\ge\dfrac{3}{4}>0\)
- Phương trình luôn có hai nghiệm phân biệt với mọi m .
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)
\(\Delta'=4+m^2-3=m^2+1>0\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-m^2+3\end{matrix}\right.\)
Kết hợp hệ thức Viet và điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=3x_1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+3x_1=4\\x_2=3x_1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\)
Lại có: \(x_1x_2=-m^2+3\)
\(\Leftrightarrow1.3=-m^2+3\Rightarrow-m^2=0\Rightarrow m=0\)