Tim TGNN của BT. A=6x/x-1/+/3x-2/+2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(x^2+x+\frac{2}{3}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{5}{12}\)
\(=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{5}{12}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\)
Mà ; \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\ge\frac{5}{12}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{5}{12}\) khi \(x=-\frac{1}{2}\)
a: \(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
=>14x=7
hay x=1/2
b: \(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)
=>-56x+156=24x-324
=>-80x=-480
hay x=6
c: \(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6=7\)
=>18x+16=7
=>18x=-9
hay x=-1/2
Câu a : \(\left(2x-3\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x+2\right)\left(2x-3+x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy ........
b ) \(\left(3x+1\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)=0\)
\(\Leftrightarrow5x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy.............
c ) \(x^3+2x^2+6x+12=0\)
\(\Leftrightarrow x^2\left(x+2\right)+6\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x\left(loại\right)\end{matrix}\right.\) Do \(x^2+6>0\)
Vậy.........
a)\(\left(2x-3\right)^2=\left(x-2\right)^2\)
\(2x-3=x-2\)
\(2x-3-x+2=0\)
\(x-1=0\)
\(x=1\)
b)\(\left(3x+1\right)^2=\left(2x-1\right)^2\)
\(3x+1=2x-1\)
\(3x+1-2x+1=0\)
\(x+2=0\)
\(x=-2\)
c)\(x^3+2x^2+6x+12=0\)
\(\left(x^3+2x^2\right)+\left(6x+12\right)=0\)
\(x^2\left(x+2\right)+6\left(x+2\right)=0\)
\(\left(x^2+6\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-6\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{6}\\x=-2\end{matrix}\right.\)
Vậy \(x=-\sqrt{6}\) hoặc \(x=-2\)
M = -x2 +3x + 3x + 9 - 8
M = -x .( -x -3 ) - 3 .( -x -3 ) - 8
M =( -x -3 ) . ( -x -3 ) - 8
M = ( -x -3 ) 2 -8
Vì ( -x -3 )2 >= 0 suy ra ( -x -3 ) 2 -8 >= -8
=> - ( -x -3) 2 + 8 <= 8
dấu " = xẩy ra <=> -x -3 =0 <=> x = -3