K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2022

Áp dụng BĐT Caushy ta có:

\(\left\{{}\begin{matrix}a^2+4\ge4a\\b^2+4\ge4b\\6\left(a^2+b^2\right)\ge6.2ab=12ab\end{matrix}\right.\)

\(\Rightarrow7\left(a^2+b^2\right)+8\ge4a+4b+12ab=4\left(a+b+3ab\right)=4.16=64\)

\(\Rightarrow7A\ge56\Rightarrow A\ge8\)

Vậy GTNN của biểu thức \(A=a^2+b^2\) là 8, đạt được khi \(a=b=2\).

 

\(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

=1

26 tháng 9 2021

\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)

23 tháng 12 2021

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

Thay a + b = 1 vào biểu thức trên ,có :

1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1

=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2

=1

Vậy biểu thức M có giá trị bằng 1 khi a + b = 1

7 tháng 11 2023

M=(a+b)(a2-ab+b2)+3ab(1-2ab)+6a2b2

M=a2-ab+b2+3ab

M=(a+b)2=1

DS
23 tháng 11 2023

Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1
nhwos tick nha :D

24 tháng 11 2023

�=�3+�3+3��(�2+�2)+6�2�2(�+�)

Biến đổi:

�2+�2=�2+2��+�2−2��=(�+�)2−2��

�3+�3=(�+�)(�2−��+�2)

Thay �+�=1 và phần biến đổi vào biểu thức, ta được:

�=(�+�)(�2−��+�2)+3��.[(�+�)2−2��]+6�2�2

⇒�=�2−��+�2+3��.[1−2��]+6�2�2

⇒�=�2−��+�2+3��−6�2�2+6�2�2

⇒�=�2+2��+�2

⇒�=(�+�)2

 

19 tháng 6 2018

Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1

27 tháng 7 2021

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab(a2+b2+2ab)=(a+b)(a2−ab+b2)+3ab(a2+b2+2ab)

=(a2−ab+b2)+3ab(a+b)2=(a2−ab+b2)+3ab(a+b)2

=a2−ab+b2+3ab=a2−ab+b2+3ab

=a2+2ab+b2=a2+2ab+b2

=(a+b)2=1

NV
26 tháng 12 2020

\(A=a^2+\dfrac{1}{16a^2}+b^2+\dfrac{1}{16b^2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

\(A\ge2\sqrt{\dfrac{a^2}{16a^2}}+2\sqrt{\dfrac{b^2}{16b^2}}+\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)

\(A\ge1+\dfrac{15}{32}\left(\dfrac{4}{a+b}\right)^2\ge1+\dfrac{15}{32}.4\)

 

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Lời giải:
$P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}$

Áp dụng BĐT AM-GM, dạng $(x+y+z)^2\geq 3(xy+yz+xz)$ ta có:

$(a^2b^2+b^2c^2+c^2a^2)^2\geq 3(a^2b^4c^2+a^4b^2c^2+a^2b^2c^4)$

$=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2$

$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq \sqrt{3}abc$

$\Rightarrow P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}\geq \sqrt{3}$

Vậy $P_{\min}=\sqrt{3}$. Giá trị này đạt tại $a=b=c=\frac{1}{\sqrt{3}}$

3 tháng 6 2019

Ta có B = (3a+b)(a - 2b)

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

22 tháng 12 2021

\(P=2+\dfrac{2}{b}+a+\dfrac{a}{b}+2+\dfrac{2}{a}+b+\dfrac{b}{a}=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(a+\dfrac{1}{2a}\right)+\left(b+\dfrac{1}{2b}\right)+\left(\dfrac{3}{2a}+\dfrac{3}{2b}\right)+4\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{a.\dfrac{1}{2a}}+2\sqrt{b.\dfrac{1}{2b}}+2\sqrt{\dfrac{3}{2a}.\dfrac{3}{2b}}+4=6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\)

Ta lại có: \(a^2+b^2\ge2\sqrt{a^2.b^2}=2ab\left(BĐT.Cauchy\right)\Rightarrow2\left(a^2+b^2\right)\ge4ab\Rightarrow\sqrt{ab}\le\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow P\ge6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\ge6+2\sqrt{2}+\dfrac{3}{\dfrac{\sqrt{2}}{2}}=6+5\sqrt{2}\)

\(minP=6+5\sqrt{2}\Leftrightarrow a=b=\dfrac{\sqrt{2}}{2}\)