Thầy cô ơi giúp e giải bài này với ạ. Em cảm ơn Bài 7 : Cho nửa đường tròn tâm O đường kính AB = 2R. Gọi M là một điểm chuyển động trên nửa đường tròn đó. Tiếp tuyến tại M của (O) cắt các tiếp tuyến Ax tại A và tiếp tuyến By tại B của (O) ở C và D. a/ Chứng minh: OACM và OBDM nội tiếp. b/ Chứng minh: ACO MBD c/ Nối OC và OD cắt AM và BM tại E và F. Tìm quỹ tích trung điểm I của EF ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AMCO có
\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối
\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AMCO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét (O) có
\(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)
hay AD\(\perp\)MB tại D
Xét (O) có
MA là tiếp tuyến có A là tiếp điểm(gt)
MC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: MA=MC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: MA=MC(cmt)
nên M nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OA=OC(=R)
nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra MO là đường trung trực của AC
hay MO\(\perp\)AC tại E
Xét tứ giác AMDE có
\(\widehat{ADM}=\widehat{AEM}\left(=90^0\right)\)
\(\widehat{ADM}\) và \(\widehat{AEM}\) là hai góc cùng nhìn cạnh AM
Do đó: AMDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc AEM=góc ADM=90 độ
=>AEDM nội tiếp
b: Xét ΔMAB vuông tại A có AD vuông góc MB
nên MA^2=MD*MB
a: Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên MO là trung trực của AC
=>MO vuông góc AC tại E
góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
góc ADM=góc AEM=90 độ
=>AMDE nội tiếp
b: ΔMAB vuông tại A có AD là đường cao
nên MA^2=MD*MB
Bạn tự vẽ hình nha!
c) Các tam giác ACM và BDM cân tại C và D; CO là phân giác góc ACM; DO là phân giác góc BDM => Các đường phân giác này cũng là đường cao => CO vuông góc với AM tại E và DO vuông góc với BM tại F => g. OEM = OFM = 90o.
Mặt khác g.AMB =90o(Góc nội tiếp chắn nửa đường tròn) => Từ giác OEMF là hình chữ nhật => I là trung điểm của OM => IO = OM/2 = R/2 (Không đổi)
Do đó khi M di chuyển thì trung điểm I của EF luôn cách O một khoảng không đổi R/2 => Quỹ tích trung điểm I của EF là nửa đường tròn tâm O bán kính R/2 cùng phía với nửa đường trón tâm O đường kính AB.