K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2015

\(\frac{2015}{2014}-1=\frac{1}{2014}>\frac{1}{2015}=\frac{2016}{2015}-1\Rightarrow\frac{2015}{2014}>\frac{2016}{2015}\Rightarrow-\frac{2015}{2014}

2 tháng 6 2015

\(1+A=1+\frac{2015}{-2014}=\frac{-1}{2014}\)

\(1+B=1+\frac{2016}{-2015}=\frac{-1}{2015}\)

Vì \(\frac{-1}{2014}

28 tháng 2 2017

>

Chắc chắn

13 tháng 2 2018

A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)

B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)

Rồi bạn tự so sánh nha

13 tháng 4 2017

a)\(\frac{2013}{2015}< \frac{2014}{2016}\)

b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)

14 tháng 4 2019

ta có tính chất \(\frac{a}{b}\)>1 suy ra \(\frac{a.m}{b.m}\).........

19 tháng 4 2015

phân tích B ta có 

B = \(\frac{2014+2015}{2015+2016}=\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\) 

vì  \(\frac{2014}{2015+2016}

4 tháng 5 2016

A=2014/2015+2015/2016.                                                                       B=(2014+2015)/(2015+2016)

A=1-1/2015+1-1/2016.                                                                             B=1-2/4031

A=1+1-(2015+2016)/(2015x2016).           So sánh

A=1+1-(4031)/(2015x2x1008).                   1+1-[4031/(4030x1008)]>1;1-2/4031<1.

A=1+1-[4031/(4030x1008)].                       Vậy 1+1-[4031/(4030x1008)]>1-2/4031.

                                                =>A>B

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

28 tháng 3 2018

\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)

17 tháng 6 2018

Tạm thời chỉ nghĩ ra được cách này -_- 

Ta có : 

\(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\)

\(A=\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2014+2}{2014}\)

\(A=\frac{2015}{2015}-\frac{1}{2015}+\frac{2016}{2016}-\frac{1}{2016}+\frac{2014}{2014}+\frac{2}{2014}\)

\(A=1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{2}{2014}\)

\(A=\left(1+1+1\right)-\left(\frac{1}{2015}+\frac{1}{2016}-\frac{2}{2014}\right)\)

\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]\)

Lại có : 

\(\frac{1}{2015}< \frac{1}{2014}\)

\(\frac{1}{2016}< \frac{1}{2014}\)

\(\Rightarrow\)\(\frac{1}{2015}+\frac{1}{2016}< \frac{1}{2014}+\frac{1}{2014}\)

\(\Rightarrow\)\(\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)< 0\)

\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]>3\)

Vậy \(A>3\)

Chúc bạn học tốt ~