Tìm A min.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(F=\dfrac{a}{b+2}\Rightarrow F.b+2F=a\)
\(\Rightarrow2F=a-F.b\)
\(\Rightarrow4F^2=\left(a-F.b\right)^2\le\left(a^2+b^2\right)\left(1^2+F^2\right)=F^2+1\)
\(\Rightarrow3F^2\le1\)
\(\Rightarrow-\dfrac{1}{\sqrt{3}}\le F\le\dfrac{1}{\sqrt{3}}\)
Dấu "=" lần lượt xảy ra tại \(\left(a;b\right)=\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\) và \(\left(\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)
b. Đặt \(\left\{{}\begin{matrix}a+b=x\\a-2b=y\end{matrix}\right.\) quay về câu a
Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)
Với a, b > 0, ta có:
\(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\)
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.
Phân phối số hạng hợp lí để áp dụng Côsi
\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge6\)
Dấu "=" xảy ra khi a = b = 1/2.
\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)
\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)
\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)
\(1,Sửa:A=4x^4+4x^2y+y^2+2=\left(2x^2+y\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow2x^2+y=0\Leftrightarrow x^2=-\dfrac{y}{2}\\ 2,B=\left(x+y\right)^2+\left(y+1\right)^2+12\ge12\\ B_{min}=12\Leftrightarrow\left\{{}\begin{matrix}x=-y=1\\y=-1\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT AM-GM:
$P=(a+1)+\frac{2}{a+1}+2\geq 2\sqrt{(a+1).\frac{2}{a+1}}+2=2\sqrt{2}+2$
Vậy $P_{\min}=2\sqrt{2}+2$
Giá trị này đạt tại $(a+1)^2=2; a>0\Leftrightarrow a=\sqrt{2}-1$
------------------------
Bổ sung ĐK: $a>1$
$X=\frac{a^2-1+2}{a-1}=a+1+\frac{2}{a-1}$
$=(a-1)+\frac{2}{a-1}+2$
$\geq 2\sqrt{2}+2$ (AM-GM)
Vậy $X_{\min}=2\sqrt{2}+2$
Giá trị đạt tại $(a-1)^2=\sqrt{2}; a>1\Leftrightarrow a=\sqrt{2}+1$
\(A=\dfrac{x}{\sqrt{y^2+1}}+\dfrac{y}{\sqrt{z^2+1}}+\dfrac{z}{\sqrt{x^2+1}}\)
\(=\dfrac{x}{\sqrt{y^2+xy+yz+zx}}+\dfrac{y}{\sqrt{z^2+xy+yz+zx}}+\dfrac{z}{\sqrt{x^2+xy+yz+zx}}\)
\(=\dfrac{x}{\sqrt{y\left(y+x\right)+z\left(y+x\right)}}+\dfrac{y}{\sqrt{z\left(z+x\right)+y\left(z+x\right)}}+\dfrac{z}{\sqrt{x\left(x+y\right)+z\left(x+y\right)}}\)
\(=\dfrac{x}{\sqrt{\left(y+x\right)\left(y+z\right)}}+\dfrac{y}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\dfrac{z}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
\(\ge^{Caushy}\dfrac{x}{\dfrac{\left(y+x\right)+\left(y+z\right)}{2}}+\dfrac{y}{\dfrac{\left(z+x\right)+\left(z+y\right)}{2}}+\dfrac{z}{\dfrac{\left(x+y\right)+\left(x+z\right)}{2}}\)
\(=\dfrac{2x}{2y+x+z}+\dfrac{2y}{2z+x+y}+\dfrac{2z}{2x+y+z}\)
\(=2\left(\dfrac{x^2}{2yx+x^2+zx}+\dfrac{y^2}{2zy+xy+y^2}+\dfrac{z^2}{2xz+yz+z^2}\right)\)
\(\ge^{Caushy-Schwarz}2.\dfrac{\left(x+y+z\right)^2}{2yx+x^2+zx+2zy+xy+y^2+2xz+yz+z^2}\)
\(=2.\dfrac{\left(x+y+z\right)^2}{\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(xy+yz+zx\right)}\)
\(=2.\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+1}\)
Đặt \(\left(x+y+z\right)^2=t^2\). Ta có:
\(A\ge\dfrac{2t^2}{t^2+1}=\dfrac{2t^2+2-2}{t^2+1}=2-\dfrac{2}{t^2+1}\).
Ta lại có: \(t^2=\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3.1=3\)
\(\Rightarrow A\ge2-\dfrac{2}{3+1}=\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{3}}{3}\)
Vậy \(MinA=\dfrac{3}{2}\)