Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
ĐKXĐ: \(\left|x-2\right|-1\ne0\)
\(\Rightarrow\left|x-2\right|\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{x}{\sqrt{y^2+1}}+\dfrac{y}{\sqrt{z^2+1}}+\dfrac{z}{\sqrt{x^2+1}}\)
\(=\dfrac{x}{\sqrt{y^2+xy+yz+zx}}+\dfrac{y}{\sqrt{z^2+xy+yz+zx}}+\dfrac{z}{\sqrt{x^2+xy+yz+zx}}\)
\(=\dfrac{x}{\sqrt{y\left(y+x\right)+z\left(y+x\right)}}+\dfrac{y}{\sqrt{z\left(z+x\right)+y\left(z+x\right)}}+\dfrac{z}{\sqrt{x\left(x+y\right)+z\left(x+y\right)}}\)
\(=\dfrac{x}{\sqrt{\left(y+x\right)\left(y+z\right)}}+\dfrac{y}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\dfrac{z}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
\(\ge^{Caushy}\dfrac{x}{\dfrac{\left(y+x\right)+\left(y+z\right)}{2}}+\dfrac{y}{\dfrac{\left(z+x\right)+\left(z+y\right)}{2}}+\dfrac{z}{\dfrac{\left(x+y\right)+\left(x+z\right)}{2}}\)
\(=\dfrac{2x}{2y+x+z}+\dfrac{2y}{2z+x+y}+\dfrac{2z}{2x+y+z}\)
\(=2\left(\dfrac{x^2}{2yx+x^2+zx}+\dfrac{y^2}{2zy+xy+y^2}+\dfrac{z^2}{2xz+yz+z^2}\right)\)
\(\ge^{Caushy-Schwarz}2.\dfrac{\left(x+y+z\right)^2}{2yx+x^2+zx+2zy+xy+y^2+2xz+yz+z^2}\)
\(=2.\dfrac{\left(x+y+z\right)^2}{\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(xy+yz+zx\right)}\)
\(=2.\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+1}\)
Đặt \(\left(x+y+z\right)^2=t^2\). Ta có:
\(A\ge\dfrac{2t^2}{t^2+1}=\dfrac{2t^2+2-2}{t^2+1}=2-\dfrac{2}{t^2+1}\).
Ta lại có: \(t^2=\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3.1=3\)
\(\Rightarrow A\ge2-\dfrac{2}{3+1}=\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{3}}{3}\)
Vậy \(MinA=\dfrac{3}{2}\)