24chia het cho x; 36 chia het cho x;160 chia hêt cho x va x lon nhat
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 24 chia hết x-1 => x-1 thuộc Ư(24)={1,2,3,4,6,8,12,24}
=> x = 2,3,4,5,7,9,13,25
b) 36 chia hết 2x+1 => 2x+1 thuộc Ư(36)={1,2,3,4,6,9,12,18,36}
Vì 2x+1 là số lẻ và > 1 => 2x+1= {3,9}
=>2x={2,8}
=>x={1,4}
a)123-5 .(x+5)= 48
5.(x+5) = 123 -48
5.(x+5) = 75
(x+5) = 75 : 5
( x+5) = 15
x = 15 - 5
x = 10
c; 15 ⋮ \(x+1\) (\(x\in\) N)
\(x+1\) \(\in\) Ư(15)
15 = 3.5
\(x+1\in\) Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
Lập bảng ta có:
\(x+1\) | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
\(x\) | -16 | -6 | -4 | -2 | 0 | 2 | 4 | 14 |
\(x\) \(\in\) N | loại | loại | loại | loại |
Theo bảng trên ta có: \(x\in\) {0; 2; 4; 14}
Vậy \(x\in\) {0; 2; 4; 14}
ta thấy 36n2+60n+24 = 12n( 3n +5) + 24
n và 3n+5 không cùng tính chẵn lẻ
suy ra n( 3n +5) chia hết cho 2
suy ra 12n( 3n +5) chia hết cho 24
nên 12n( 3n +5) + 24 chia hết cho 24
nên 36n2+60n+24 chia hết cho 24
LÀM NHƯ CÔNG THƯC CỦA TƠ LÀ ĐƯỢC
\(\sqrt{2\sqrt[]{}45\frac{ }{ }23\hept{\begin{cases}\\\end{cases}}T\hept{\begin{cases}\\\\\end{cases}}T\orbr{\begin{cases}\\\end{cases}}T^2T^{ }T\overrightarrow{ }\cos∄ℝ}\)
A) 24 ⋮ x; 18 ⋮ x nên x ƯC(24; 18)
24 = 2³.3
18 = 2.3²
⇒ ƯCLN(24; 18) = 2.3 = 6
⇒ x ∈ ƯC(24; 18) = Ư(6) = {1; 2; 3; 6}
Mà x ≥ 9
⇒ Không tìm được x thỏa mãn yêu cầu
B) 12 ⋮ x; 20 ⋮ x nên x ∈ ƯC(12; 20)
12 = 2².3
20 = 2².5
⇒ ƯCLN(12; 20) = 2² = 4
⇒ x ∈ ƯC(12; 20) = Ư(4) = {1; 2; 4}
Mà x ≥ 5
⇒ Không tìm được x thỏa mãn yêu cầu
C) 24 ⋮ x; 36 ⋮ x và x lớn nhất
⇒ x = ƯCLN(24; 36)
24 = 2³.3
36 = 2².3²
⇒ x = ƯCLN(24; 36) = 2².3 = 12
D) 64 ⋮ x; 48 ⋮ x nên x ∈ ƯC(64; 48)
64 = 2⁶
48 = 2⁴.3
⇒ ƯCLN(64; 48) = 2⁴ = 16
⇒ x ∈ ƯC(64; 48) = Ư(16) = {1; 2; 4; 8; 16}
Mà 3 ≤ x 20
⇒ x ∈ {4; 8; 16}
a,Ta có:3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
=>n-4\(\in\)Ư(36)={-36,-18,-12,-9,-6,-4,-3,-2,-1,1,2,3,4,6,9,12,18,36}
=>n\(\in\){-32,-14,-8,-5,-2,0,1,2,3,5,6,7,8,10,13,16,22,40}
n,n-6 chia hết cho n-1
=>n-1-5 chia hết cho n-1
Mà n-1 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
a, Vì : 24 \(⋮\)x , 36 \(⋮\)x , 160 \(⋮\)x và x lớn nhất
=> x = ƯCLN(24,36,160)
Ta có :
24 = 23 . 3
36 = 22 . 32
160 = 25 . 5
ƯCLN(24,36,160) = 22 = 4
Vậy x = 4
b, Vì 15 \(⋮\)x , 20 \(⋮\)x , 35 \(⋮\)x và x > 3
=> x \(\in\) ƯC(15,20,35)
Ư(15) = { 1;3;5;15 }
Ư(20) = { 1;2;4;5;10;20 }
Ư(35) = { 1;5;7;35 }
ƯC(15,20,35) = { 1;5 }
Mà : x > 3
=> x = 5
Vậy x = 5
c, Vì : 91 \(⋮\)x , 26 \(⋮\)x và 10 < x < 30
=> x \(\in\) ƯC(91,26)
Ư(91) = { 1;7;13;91 }
Ư(26) = { 1;2;13;26 }
ƯC(91,26) = { 1;13 }
Mà : 10 < x < 30
=> x = 13
Vậy x = 13
d, Vì : 10 \(⋮\)( 3x + 1 )
=> 3x + 1 \(\in\) Ư(10)
Mà : Ư(10) = { 1;2;5;10 }
=> 3x + 1 \(\in\) { 1;10 }
+) 3x + 1 = 1 => 3x = 0 => x = 0
+) 3x + 1 = 10 => 3x = 3 => x = 1
Vậy x \(\in\) { 0;1 }
Vì theo đề bài
=> x thuộc ƯCLN(24;36;160)
Ta có: 24 = 2^3 x 3
36 = 2^2 x 3^3
160 = 2^5 x 5
=> ƯCLN(24;36;160) = 2^2 = 4
=> x = 4.
Tìm ước chung các số (cách làm sgk)
lấy số lớn nhất
thế là xong