tìm x,y,z>0 sao cho 3x^2-18y^2+2y^2+3y^2*z^2-18x=27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) cho a = cănbâc3(căn5+2) -cănbâcba(căn5-2)
tính giá trị biếu thức
a^5 +4a^3 - 4a^2 +3a
2) tìm t =5/x- x/4 biết x thỏa mãn
thỏa mãn pt
x^2 /4 +100/x^2 =35+120/x -6x
3) tìm các số nguyên dương
3x^2 -18y^2 +2z^2 +3y^2z^2 -18x =27
4/ giải phương trình
x^2 =căn (x^3 -x )+ căn(x^2 -x)
5) tìm a hai phưng trình ẩn x thỏa mãn
x^2 +x +a=0 và x^2 +ax +1=0
a)
có nghiệm chung
b) hpt tương đương
6/tim hai số m; n thuộc N sao cho x thuộc N
m^2 +n^2 +mn =3x
\(3x^2-18y^2+2z^2+3y^2z^2-18x=27\Leftrightarrow3\left(x-3\right)^2+2z^2-18y^2+3y^2z^2=54\)(*)
Để phương trình có nghiệm nguyên thì \(z^2⋮3\Leftrightarrow z⋮3\Leftrightarrow z^2⋮9\Leftrightarrow z^2\ge9\)
Ta có (*)\(\Leftrightarrow3\left(x-3\right)^2+2z^2+3y^2\left(z^2-6\right)=54\Rightarrow54=3\left(x-3\right)^2+2z^2+3y^2\left(z^2-6\right)\ge3\left(x-3\right)^2+2.9+3y^2\Leftrightarrow3\left(x-3\right)^2+3y^2\le12\Leftrightarrow y^2\le4\Leftrightarrow y^2=1\) hoặc y2=4
_ y2=1\(\Leftrightarrow y=1\)
Vậy (*) có dạng \(3\left(x-3\right)^2+5z^2=72\Leftrightarrow5z^2\le72\Leftrightarrow z^2=9\Leftrightarrow z=3\Leftrightarrow x=6\)_y2=4\(\Leftrightarrow y=2\)
Vậy (*) có dạng \(3\left(x-3\right)^2+14z^2=126\Leftrightarrow14z^2\le126\Leftrightarrow z^2\le9\Leftrightarrow\)\(z=3\Leftrightarrow x=3\)
Vậy (x;y;z)={(3;2;3);(6;1;3)}
Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)
Dấu bằng xảy ra khi \(x=y=z=2\)
Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\); \(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)
Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)
Đẳng thức xảy ra khi x = y = z = 2
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Ta có:\(3x^2-18y^2+2z^2+3y^2z^2-18x=27\)
\(\Leftrightarrow3x^2-18y^2+2z^2+3y^2z^2-18x-27=0\)
\(\Leftrightarrow3\left(x^2-6x+9\right)-18y^2+2z^2+3y^2z^2-54=0\)
\(\Leftrightarrow3\left(x-3\right)^2-18y^2+2z^2+3y^2z^2=54\)
Để pt có nghiệm nguyên thì:\(z^2⋮3\) \(\Rightarrow z⋮3\)\(\Rightarrow z^2⋮9\)\(\Rightarrow z^2\ge9\)
\(\Leftrightarrow3\left(x-3\right)^2+3y^2\left(z^2-6\right)+2z^2=54\)
\(\Rightarrow54=3\left(x-3\right)^2+3y^2\left(z^2-6\right)+2z^2\ge3\left(x-3\right)^2\le12\)
\(\Rightarrow y^2\le4\Rightarrow\hept{\begin{cases}y^2=1\\y^2=4\end{cases}}\)
Với \(y^2=1\Rightarrow y=1\)pt có dạng :
\(3\left(x-3\right)^2+5z^2=72\)
\(\Leftrightarrow5z^2\le72\)
\(\Leftrightarrow z^2=9\Leftrightarrow z=3\)
\(\Rightarrow x=6\)
Với \(y^2=4\Rightarrow y=2\)pt có dạng:
\(3\left(x-3\right)^2+14z^2=126\)
\(\Leftrightarrow14z^2\le126\)
\(\Leftrightarrow z^2\le9\Rightarrow z=3\)
\(\Rightarrow x=3\)
Vậy ......
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
Áp dụng bất đẳng thức svác sơ ta có
\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)
Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)
Áp dụng bất đẳng thức Canchy Schwarz dạng Engel :
\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)
Dấu " = " xảy ra khi x=y=z=1.