K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

3 tháng 2 2020

\(\frac{x+y}{xy}=\frac{3}{2}\left(1\right)\) \(Đkxđ:\hept{\begin{cases}x\ne0\\y\ne0\end{cases}}\)

\(\Leftrightarrow2\left(x+y\right)=3xy\)

\(\Leftrightarrow2x+2y-3xy=0\)

\(\Leftrightarrow2x\left(1-y\right)+2y-xy=0\)

\(\Leftrightarrow2x\left(1-y\right)+y\left(2-x\right)=0\)

\(\Leftrightarrow2x\left(1-y\right)=\left(x-2\right)y\)

Để pt \(\left(1\right)\)có nghiệm là số tự nhiên ta phải có:

  • \(\hept{\begin{cases}1-y=0\\x-2=0\end{cases}}\)
  • \(\hept{\begin{cases}1-x=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Tập \(n_0\)\(S=\left\{\left(x,y\right)\right\}=\left\{\left(1;2\right);\left(2;1\right)\right\}\)

10 tháng 3 2019

Theo bài ra: 5x+y4=18

5/x=1/82y/8

5x=12y/8

5:x=(12y):8

x(12y)=40 ( Quy tắc chuyển vế )

Có: 12y là số lẻ

⇒ 1 - 2y thuộc ước lẻ của 40.

12y{±1;±5}

Ta có bảng sau:

12y1155
y0123
x404085

Vậy x{40;40;8;8};y{0;1;2;3}

20 tháng 4 2019

\(\frac{x+y}{x^2+xy+y^2}=\frac{5}{19}\Leftrightarrow19\left(x+y\right)=5\left(x^2+xy+y^2\right)\) (*)

từ pt (*) ta thấy \(19\left(x+y\right)⋮5\) mà (19,5)=1 \(\Rightarrow x+y⋮5\Rightarrow x+y=5k\left(k\in Z\right)\)

Thay x+y=5k vào (*) ta được: \(x^2+xy+y^2=19k\) (1)

Lại có: \(x+y=5k\Leftrightarrow x^2+2xy+y^2=25k^2\) (2)

Lấy (2) - (1) ta có: \(xy=25k^2-19k\)

Xét \(\left(x+y\right)^2-4xy=\left(x-y\right)^2\ge0\Leftrightarrow25k^2-4\left(25k^2-19k\right)\ge0\Leftrightarrow75k^2-76k\le0\)

\(\Leftrightarrow0\le k\le\frac{76}{75}\Rightarrow k\in\left\{0;1\right\}\)

-Nếu k=0 thì \(\hept{\begin{cases}x+y=0\\xy=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

-Nếu k=1 thì \(\hept{\begin{cases}x+y=5\\xy=6\end{cases}\Leftrightarrow\left(x;y\right)=\left(2;3\right);\left(3;2\right)}\)

13 tháng 6 2021

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

13 tháng 6 2021

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)