x-2\(\sqrt{\left(x-1\right)}\) =16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
=>x-3=0 hoặc \(\sqrt{x+3}=2\)
=>x=3 hoặc x+3=4
=>x=1(loại) hoặc x=3(nhận)
2:
\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)
=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)
=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)
=>4(12x^2-16x+3x-4)=(7x-6)^2
=>49x^2-84x+36=48x^2-52x-16
=>-84x+36=-52x-16
=>-32x=-52
=>x=13/8
3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)
=>|x-5|=5-x
=>x-5<=0
=>x<=5
4: \(\Leftrightarrow\left|x-4\right|=x+2\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)
=>x>=-2 và -8x+16=4x+4
=>x=1
ĐKXĐ: \(x\ge-2;y\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:
\(a\left(a^2+1\right)=b\left(ab+1\right)\)
\(\Leftrightarrow a^3+a=ab^2+b\)
\(\Leftrightarrow a^3-ab^2+a-b=0\)
\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)
\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))
\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)
\(\Rightarrow y=x+2\)
Thế vào pt dưới:
\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)
\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(đặt:\sqrt{x^2+1}=t>0\Rightarrow\left(x+3\right)t^2+4\left(x+2\right)t-16=0\)
\(\Leftrightarrow\left(t+4\right)\left(tx+3t-4\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-4\left(loại\right)\\tx+3t-4=0\Leftrightarrow t=\dfrac{4}{x+3}\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2+1}=\dfrac{4}{x+3}\left(x>-3\right)\Leftrightarrow x^2+1=\dfrac{16}{\left(x+3\right)^2}\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+3\right)^2-16=0\Leftrightarrow x^4+6x^3+10x^2+6x-7=0\Rightarrow x=....\)
bài này nghiệm xấu quá
1 cách khác \(\Rightarrow x+2+\dfrac{4}{\sqrt{x^2+1}}\cdot\left(x+2\right)-\dfrac{16}{x^2+1}+1=0\)
Đặt a= x+2; b=\(\dfrac{4}{\sqrt{x^2+1}}\) pttt: \(a+ab-b^2+1=0\Leftrightarrow\left(b+1\right)\left(a-b+1\right)=0\Leftrightarrow a=b-1\) ( Vì b>0)
\(\Rightarrow x+2=\dfrac{4}{x^2+1}-1\) \(\Rightarrow...\)
a. ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)
\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)
Pt trở thành:
\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)
\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)
\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)
\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)
b.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)
Pt trở thành:
\(t=t^2-4-16\Leftrightarrow...\)
ĐK: x \(\ge\) 1
Có:
\(=\sqrt{4}.\sqrt{x-1}-\sqrt{9}.\sqrt{x-1}-\sqrt{16}.\sqrt{x-1}\\ =2.\sqrt{x-1}-3.\sqrt{x-1}-4.\sqrt{x-1}\\ =\sqrt{x-1}\left(2-3-4\right)\\ =-5\sqrt{x-1}\)
\(=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}\)
\(=-5\sqrt{x-1}\)
\(x-2\sqrt{x-1}=16\)
Điều kiện: \(x\ge1\)
\(\Leftrightarrow\left(x-1\right)-2\sqrt{x-1}+1=16\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=16\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=\left(\pm4\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=4\\\sqrt{x-1}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=5\\\sqrt{x-1}=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=5^2\)
\(\Leftrightarrow x=26\)
tìm x