K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Đề kiểm tra Toán 6 | Đề thi Toán 6

28 tháng 12 2017

Ta có  1 a + b + c = a b c ¯ 1000 ⇔ a b c ¯ a + b + c = 1000

Vậy a+b+c là ước của 1000

Mà  a b c ¯ ≥ 100 ⇒ a + b + c ≤ 10 → a + b + c ∈ 1 ; 2 ; 4 ; 5 ; 8

Thử các trường hợp xảy ra chỉ chọn được a+b+c=8

Do đó:  a b c ¯ = 1000 : 8 = 125

Vậy  a b c ¯ là 125

24 tháng 12 2017

Đáp án B

10 tháng 9 2021

a) \(C=A+B=x^2-2y+xy+1+x^2+y-x^2y^2-1=2x^2-y+xy-x^2y^2\)

b) \(C+A=B\)

\(\Rightarrow C=B-A=x^2+y-x^2y^2-1-x^2+2y-xy-1=3y-x^2y^2-xy-2\)

10 tháng 9 2021

a, C= A+B= x- 2y + xy + 1+x+ y - x2y- 1

                 = (x2 +x 2) +(-2y +y) + xy -x2y2+(1-1)

                 = 2x2 -y +xy - x2y2

b, C+A=B => C = B- A= x+ y - x2y- 1-(x- 2y + xy + 1)

                                    = x+ y - x2y- 1-x2  + 2y - xy - 1)

                                     = (x2-x2)+(y+2y)-x2y2-xy+(-1-1)

                                      = 3y-x2y2-xy-2

Hoctot

Bài 1: 

a) Ta có: \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

\(\Leftrightarrow2^x\cdot4\cdot3^x\cdot3\cdot5^x=10800\)

\(\Leftrightarrow30^x=900\)

hay x=2

Vậy: x=2

2 tháng 8 2019

1

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)

=> M ko là số tự nhiên

2

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)

3

\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)

\(\Rightarrow35x+35y=2010x-2010y\)

\(\Rightarrow35-2010x=2010y-35y\)

\(\Rightarrow-175x=-245y\)

\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)

\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)

Đặt \(\frac{x}{7}=\frac{y}{5}=k\)

\(\Rightarrow x=7k;y=5k\)

\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)

\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)

Vậy \(x=7;y=5\)

2 tháng 8 2019

bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3* 

10 tháng 8 2017

18 tháng 9 2017

Chọn A