K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBAM và ΔECM có 

MA=MC(M là trung điểm của AC)

\(\widehat{BMA}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=ME(gt)

Do đó: ΔBAM=ΔECM(c-g-c)

b) Ta có: ΔBAM=ΔECM(cmt)

nên \(\widehat{ABM}=\widehat{CEM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong

nên AB//CE(Dấu hiệu nhận biết hai đường thẳng song song)

a: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

c: Xét ΔEHB vuông tại H và ΔFKC vuông tại K có

EB=FC

góc EBH=góc FCK

=>ΔEHB=ΔFKC

=>EH=FK

d: Xét ΔABH và ΔACK có

AB=AC

góc ABH=góc ACK

BH=CK

=>ΔABH=ΔACK

=>AH=AK

=>ΔAHK cân tại A

mà AM là đường cao

nên AM là phân giác của góc HAK

e: Xét ΔAHE và ΔAKF có

AH=AK

góc AHE=góc AKF

HE=KF

=>ΔAHE=ΔAKF

 

23 tháng 2 2023

dài

18 tháng 12 2022

Sửa đề: M là trug điểm của AC

a: Xét tứ giác ABCE có

M là trung điểm chung của AC và BE

nên ABCE là hình bình hành

=>AB=CE

b: ABCE là hình bình hành

nên CE//AB

=>CE vuông góc với AC

17 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔAMB=ΔAMC

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAK}=\widehat{EAK}\)

=>AK là phân giác của góc DAE

Xét ΔADE có

AK là đường cao

AK là đường phân giác

Do đó: ΔADE cân tại A

c: Xét ΔBAC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

mà F\(\in\)DE và M\(\in\)BC

nên EF//MC

Xét tứ giác EFCM có

EF//CM

EF=CM

Do đó: EFCM là hình bình hành

=>EC cắt FM tại trung điểm của mỗi đường

mà H là trung điểm của EC

nên H là trung điểm của FM

=>F,H,M thẳng hàng

8 tháng 1 2022

( Hình bạn tự vẽ giúp mình nha )

a) Xét △ ABM và △ ACN có

          AB = AC

          BM = CN

         \(\widehat{ABM}=\widehat{ACN}\)

⇒ △ ABM = △ ACN ( c - g - c )

⇒ AM = AN ( hai cạnh tương ứng )

Suy ra: △ AMN cân tại A

b) Xét tam giác vuông BME và tam giác vuông CNF ta có:

         MB = CN

         \(\widehat{EMB}=\widehat{CNF}\)   ( vì △ AMN cân tại A )

⇒ △ BME = △ CNF ( ch - gn )

c) Vì △ BME = △ CNF ( cmt )

⇒ ME = CF

⇒ EA = FA  

Xét tam giác vuông EAO và tam giác vuông AOF ta có:

          AE = FA

          AO cạnh chung

⇒ △ EOA = △ FOA ( ch - cgv )

⇒ \(\widehat{EAO}=\widehat{FAO}\)

Hay AO là tia phân giác góc \(\widehat{MAN}\)

d) Ta có:     EO ⊥ AM

                   MH ⊥ AM

⇒ EO // MH

Lại có:    \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )

Từ đó suy ra:    A, O, H thẳng hàng

29 tháng 12 2023

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng

16 tháng 7 2021

Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.

 

26 tháng 11 2019

bạn tự vẽ hình nha 

a) xét tg ABM và tg CDM có 

  MA=MC(M là trung điểm AC )

  \(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )

  MB=MD(gt)

\(\Rightarrow\)tg ABM=tg CDM (c-g-c)

b) bạn xem lại đề bài nha mik nghĩ là đề sai 

c) ta có MB=MD,MA=MC(gt)

 mà M lại là trung điểm của BD,AC

\(\Rightarrow\)ABCD là hình chữ nhật 

có E là trung diểm BC 

mà EM cắt AD tại F

\(\Rightarrow F\)là trung điểm AD (dpcm)

26 tháng 11 2019

P/s : sửa đề : MB = MD B C E M F D A

a) Xét tam giác ABM và tam giác CDM có : 

AM = CM ( vì M là trung điểm của AC ) 

Góc AMB = góc CMD ( 2 góc đối đỉnh )

MB = MD ( GT )

=> tam giác ABM = tam giác CDM ( c - g - c ) 

b) Theo chứng minh trên , ta có : tam giác ABM = tam giác CDM

=> Góc BAM = Góc MCD ( 2 góc tương ứng )

Mà góc BAM = 90( Tam giác ABC vuông tại A )

=> Góc MCD = 90o

=> AC vuông góc với DC tại C 

c) +) Xét tam giác ABC có :

E là trung điểm của BC ( GT )

M là trung điểm của AC ( GT )

=> EM là đường trung bình của tam giác ABC 

=> EM // AB ( tính chất )

Mà AB // CD ( do AC \(\perp\)CD ; AC \(\perp\) AB )

=> EM // CD hay MF // CD

+) Xet tam giác ACD có :

M là trung điểm của AC

MF // CD

=> F là trung điểm của AD ( điều phải chứng mình )