1 và 1/2 x 1 và 1/8 x 1 và 1/16 x ...x 1 và 1/99
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)
b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)
=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc \(\frac{1}{2}x-1=-\frac{1}{2}\)
=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1
c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
=> x - 1= 2 => x = 3
d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)
=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)
2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\); \(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)
Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)
b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}
Vậy xét là \(\frac{1}{2}+1\)nhé.
a,\(\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{1000}{999}\)
=3x4x5x...x1000/2x3x4x...x999
=1000/2=500
b, c tương tự câu a
)(1/2+1)x(1/3+1)x(1/4+1)x...x(1/999+1)
b)(1/2-1)x(1/3-1)x(1/4-1)x...x(1/1000-1)
c)3/22 x 8/32 x 15/42 x .... x 99/102
mình ko biết làm chép lại de thui
\(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)
\(=\frac{\left(1-x\right)\left(1+x+x^2\right)-x+x^2}{1-x}.\frac{\left(1-x\right)-x^2\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}\)
\(=\frac{\left(1-x\right)\left(1+x+x^2\right)-x\left(1-x\right)}{1-x}.\frac{\left(1-x\right)\left(1-x^2\right)}{\left(1-x\right)\left(1+x\right)}\)
\(=\frac{\left(1-x\right)\left(1+x^2\right)}{1-x}.\frac{\left(1-x\right)\left(1-x\right)\left(1+x\right)}{\left(1-x\right)\left(1+x\right)}\)
\(=\left(1+x^2\right)\left(1-x\right)\)
\(=-x^3+x^2-x+1\)
Ta có : \(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)
\(=\left(\frac{\left(1-x\right)\left(1+x+x^2\right)}{\left(1-x\right)}-x\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)-\left(x^2-x^3\right)}\)
\(=\left(\left(1+x+x^2\right)-x\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)-x^2\left(x-1\right)}\)
\(=\left(1+x^2\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)\left(1-x^2\right)}\)
\(=\left(1+x^2\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)\left(1-x\right)\left(x+1\right)}\)
\(=\left(1+x^2\right):\frac{1}{1-x}\)
\(=\left(1+x^2\right)\left(1-x\right)\)