K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)

b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)

21 tháng 7 2019

\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)

\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)

\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)

21 tháng 7 2019

b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có: 

 \(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\) 

Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)

17 tháng 5 2017

viết đề như vậy sao đọc được ?

17 tháng 5 2017

có ai đọc được ko ???????????

30 tháng 9 2019

\(\frac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\)

\(=\frac{1}{\sqrt{n-1}\sqrt{n}\left(\sqrt{n-1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n-1}\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\)

Sau đó bạn tự áp dụng vào nhé!